Домой Полы Тема урока: «Явление самоиндукции. Индуктивность. Энергия магнитного поля. Решение задач. Самоиндукция. Энергия самоиндукции, индуктивность - материалы для подготовки к ЕГЭ по Физике Явление электромагнитной индукции индуктивность энергия магнитного поля

Тема урока: «Явление самоиндукции. Индуктивность. Энергия магнитного поля. Решение задач. Самоиндукция. Энергия самоиндукции, индуктивность - материалы для подготовки к ЕГЭ по Физике Явление электромагнитной индукции индуктивность энергия магнитного поля

Урок № 46-169

Самоиндукция - явление возникновения ЭДС индукции в проводящем контуре при изменении в нем силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции.

Проявление явления самоиндукции.

Замыкание цепи. При замыкании в электрической цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое электрическое поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).

В результате Л1 загорается позже, чем Л2.

Размыкание цепи.

При размыкании электрической цепи ток убывает, возникает уменьшение магнитного потока в катушке, возникает вихревое электрическое поле, направленное как ток (стремящееся сохранить прежнюю силу тока), т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает.

Индуктивность , или коэффициент самоиндук­ции - параметр электрической цепи, который определяет ЭДС самоиндукции, наводимой в цепи при изменении протекающего по ней тока или (и) ее деформации. Термином «индуктивность» обозначают также катушку самоиндукции, которая определяет ин­дуктивные свойства цепи.

Самоиндукция - возникновение ЭДС индук­ции в проводящем контуре при изменении в нем силы тока. ЭДС индукции возникает при изменении маг­нитного потока. Если это изменение вызывается собственным током, то говорят об ЭДС самоиндук­ции:

ε is =–
= –L,

где L - индуктивность контура, или его коэффи­ циент самоиндукции.

Индуктивность - физическая величина, чис­ленно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Ф - магнитный поток через контур, I - сила тока в контуре. Единица индуктивности в СИ генри (Гн): [ L] = [] = []= Гн; 1 Гн = 1
.

Индуктивность, как и электроемкость, зависит от геометрии проводника - его размеров и формы, но не зависит от силы тока в проводнике. Кроме того, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Индуктивность катушки зависит от:

− числа витков,

размеров и формы катушки;

от относительной магнитной проницаемости среды (возможен сердечник).

Токи замыкания и размыкания При любом включении и выключении тока в цепи наблюдаются так называемые экстрато­ки самоиндукции (экстратоки замыкания и раз­ мыкания), возникающие в цепи вследствие явле­ния самоиндукции и препятствующие (согласно правилу Ленца) нарастанию либо убыванию тока в цепи. Индуктивность характеризует инерционность цепи по отношению к изменению в ней тока, и ее можно рассматривать как электродинамический аналог массы тела в механике, являющейся мерой инертности тела. При этом сила тока I играет роль скорости тела. Энергия магнитного поля тока. Найдем энергию, которой обла­дает электрический ток в провод­нике. Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энер­гии, которую должен затратить ис­точник тока (гальванический эле­мент, генератор на электростанции и др.) на создание тока. При прекращении тока эта энергия выделяется в той или иной форме. Выясним, почему же для созда­ния тока необходимо затратить энергию, т. е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое со­здается в проводнике благодаря ис­точнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток ис­чезает и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обна­руживается по мощной искре, воз­никающей при размыкании цепи с большой индуктивностью.

I, текущего по цепи с ин­дуктивностью L, (т. е. для энергии магнитного поля тока), можно на основании аналогии между инер­цией и самоиндукцией, о которой говорилось выше. W м можно считать величиной, подобной кинетической энергии тела
в ме­ханике, и записать в виде W м =
(**) L, и силу тока в нем I. Но эту же энергию можно выра­зить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропор­циональна квадрату магнитной ин­дукции, подобно тому, как плот­ность энергии электрического поля пропорциональна квадрату напряженности электрического поля.

Магнитное поле, созданное элек­трическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

5. В катушку сопротивлением 2 Ом течёт ток 3 А. Индуктивность катушки 50 мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно возрастает со скоростью 200 ?


Урок № 46-169 Самоиндукция. Индуктивность. Энергия магнитного поля тока. Д/з:§15; § 16 1. Самоиндукция – явление возникновения ЭДС в проводящем контуре при изменении в нем силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции. По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока. А в момент умень­шения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах.

Схема параллельного со­единения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последователь­но с катушкой L , снабженной железным сердечником.

П
ри замыкании ключа первая лампа вспыхивает прак­тически сразу, а вторая - с заметным запозданием. ЭДС са­моиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (рис.).

Появление ЭДС самоиндукции при размыкании:

При размыкании ключа в катушке L возни­ кает ЭДС самоиндукции, поддерживающая первоначаль ный ток. В результате в момент размыкания через гальва­нометр идет ток (от R к A), направленный против начального тока до размыкания (I к амперметру). Сила тока при размыкании цепи может превышать силу тока,

проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции ε IS . больше ЭДС ε ба­ тареи элементов.

2. Индуктивность. Модуль вектора индукции магнит­ного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален , то Ф ~ В ~ I . Можно утверждать, что Ф=LI, (1)

где L - коэффициент пропорциональности между током в проводящем контуре и магнитным потоком. Величину L называют индуктивностью контура, или его коэффициен­ том самоиндукции.

Используя закон электромагнитной индукции и выра­жение (1), получаем равенство

ε IS = -= - L (2), если считать, что форма контура остается неизменной и по­ ток меняется только за счет изменения силы тока. Из формулы (2) следует, что индуктивность - это фи­ зическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от геометрических факторов: размеров проводника и его фор­мы, но не зависит непосредственно от силы тока в провод­нике. Кроме геометрии проводника, индуктивность зави­сит от магнитных свойств среды, в которой находится проводник.

Индуктивность одного проволочного витка меньше, чем у катушки (соленоида), состоящей из N таких же витков, так как магнитный поток катушки увеличивает­ся в N раз.

Единицу индуктивности в СИ называют генри (обозна­чается Гн). Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В: 1 Гн == 1


3. Энергия магнитного поля тока Согласно закону сохранения энергии энергия магнит­ного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При размыкании цепи ток исчезает, и вихревое поле со­вершает положительную работу. Запасенная током энер­гия выделяется. Это обнаруживается, например, по мощ­ной искре, возникающей при размыкании цепи с большой индуктивностью. Записать выражение для энер­гии тока I, текущего по цепи с ин­дуктивностью L, (т. е. для энергии магнитного поля тока), можно на основании аналогии между инер­цией и самоиндукцией. Если самоиндукция аналогична инерции, то индуктивность в про­цессе создания тока должна играть ту же роль, что и масса при увели­чении скорости тела в механике. Роль скорости тела в электродина­мике играет сила тока I как ве­личина, характеризующая движение электрических зарядов. Если это так, то энергию тока W м можно считать величиной, подобной кинетической энергии тела в ме­ханике, и записать в виде W м = (**) Именно такое выражение для энер­гии тока и получается в резуль­тате расчетов. Энергия тока (**) выражена через геометрическую характеристи­ку проводника L, и силу тока в нем I. Но эту же энергию можно выра­зить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропор­циональна квадрату магнитной ин­дукции w М ~ В 2 , подобно тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля w Э ~ Е 2

Запомни: Магнитное поле, созданное элек­трическим током, обладает энергией, прямо пропорциональной квадрату силы тока.


Основные формулы: Закон Фарадея (законом электромагнитной индукции): ε = – ,где ΔФ - изменение магнитного потока, Δt - промежуток време­ни, за которое это изменение произошло.

Явление самоиндукции заключается в том, что при изменении тока в цепи возникает ЭДС, противодействующая этому изменению. Магнитный поток Ф через поверхность, ограниченную контуром, прямо пропорционален силе тока I в контуре: Ф = LI,

где L - коэф­фициент пропорциональности, называемый индуктивностью.

ЭДС самоиндукции выражается через изменение силы тока в цепи Δ I следующей фор­мулой:

ε = - = -L где Δt - время, за которое это изменение произошло.

Энергия магнитного поля W выражается формулой: W=

Задачи. Самоиндукция. Индуктивность.

1. Какая ЭДС самоиндукции возникает в катушке с индуктивностью 86 мГн, если ток 3,8А исчезает в ней за 0,012 с?

2. Определить ЭДС самоиндукции, если в катушке с индуктивностью 0,016 мГн сила тока уменьшается со скоростью 0,5 к А /с.

3. Какова индуктивность катушки, если при равномерном изменении в ней тока от 2 до 12 А за 0,1 с возникает ЭДС самоиндукции, равная 10 В?

4. Магнитный поток, пронизывающий контур проводника сопротивлением 0,2 Ом, равномерно изменяется с 1,2∙10 -3 Вб до 0,4∙10 -3 Вб за 2 мс. Определить силу тока в контуре.

5. В катушку сопротивлением 2 Ом течёт ток 3 А. Индуктивность катушки 50 мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно возрастает со скоростью 200 А/с?

6. Какова скорость изменения силы тока в обмотке реле с индуктивностью 3,5 Гн, если в ней возбуждается ЭДС самоиндукции 105 В?

7. Катушку с ничтожно малым сопротивлением и индуктивностью 3 Гн присоединяют к источнику тока с ЭДС 15 В и ничтожно малым внутренним сопротивлением. Через какой промежуток времени сила тока в катушке достигнет 50А? 8. Катушка индуктивностью 0,2 Гн подключена к источнику тока с ЭДС =10 В и внутренним сопротивление 0,4 Ом. Определить общую ЭДС в момент размыкания цепи, если ток в ней исчезает за 0,04 с, а сопротивление проволоки катушки 1,6 Ом. 9. Катушка сопротивлением 10 Ом и индуктивностью 0,01 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличился на 0,01 Вб, ток в катушке возрос на 0,5 А. Какой заряд прошёл за это время по катушке?

8

Индуктивность – это коэффициент пропорциональности между электрическим током, протекающим по замкнутому контуру, и магнитным потоком через поверхность, ограниченную контуром.

Математическая формула, соответствующая этому определению:

где Ф – магнитный поток,

L – индуктивность,

I – сила тока.

Это классическое определение индуктивности, принятое на начальном этапе изучения электромагнитных явлений. В нем отражено одно из проявлений индуктивности. Познакомившись с ним, можно подумать, что индуктивность – свойство небольшого класса объектов, неких замкнутых контуров, создающих магнитное поле. Это не так; проявления индуктивности многообразны, и мы сталкиваемся с ними в повседневной жизни, зачастую не сознавая этого.

В девятнадцатом веке ученые только начинали изучать электромагнитные явления. Понятие индуктивности, как особого свойства электропроводящего контура, сформулировано в 1886 году, при изучении постоянного тока.

Правило Ленца и индуктивность

Электрический ток создает магнитное поле – это была сенсация в девятнадцатом веке. Электрические и магнитные явления представлялись в прошлом совершенно разными явлениями, и открытие связи между ними вызвало горячий интерес исследователей. Магнитное поле казалось многоликим, присущим совершенно разным объектам – куску магнитной руды, Земному шару и… проводу с током. Сейчас известно, что в каждом из этих объектов магнитное поле порождается движением электрического заряда.

В современной науке установлена общая природа электрического и магнитного полей. При изучении постоянного тока был сделан первый шаг к пониманию этой истины – открыта связь между током и магнитным полем, между силой тока и силой создаваемого им магнитного поля.

Символ L , которым обозначается индуктивность, выбран в честь физика Эмиля Ленца. Он изучал магнитные явления, возникающие при протекании электрического тока. Сила Ленца – это сила, действующая на проводник с током, помещенный в магнитное поле.

Ленц также наблюдал, как катушки из электрических проводов, по которым пропускался ток, притягивались или отталкивались, подобно постоянным магнитам. Притяжение или отталкивание? Это определялось направлением тока в витках, взаимным расположением катушек. А сила взаимодействия определялась количеством витков и силой тока. При одинаковом токе, катушка с большим числом витков создавала большее магнитное поле.

Контур с током и катушка индуктивности

Контур с током может быть одиночным (одновитковая катушка)

Контур с током может состоять из нескольких контуров (многовитковая катушка)

В электротехнике и радиотехнике применяются многовитковые катушки.

Чем больше витков, тем больше индуктивность катушки. Один и тот же ток, протекающий через одиночный виток и через многовитковую катушку, создаст разное по силе магнитное поле. У многовитковой катушки индуктивность больше, чем у одного витка; она пропорциональна количеству витков.

Когда нужно создать сильное магнитное поле, наматывают сотни и тысячи витков из тонкой медной проволоки. Такие катушки применяются в электромагнитах, трансформаторах, электродвигателях.

Индуктивность, индукция, самоиндукция

Если обозначение индуктивности L выбрано в честь физика Ленца, то единица измерения индуктивности Генри (Гн) носит имя другого физика – Джозефа Генри.

Ленц исследовал магнитные явления, возникающие при наличии постоянного тока, а Генри занимался переменным током. Точнее, он рассматривал переходные процессы, возникающие при включении и выключении электрического тока.

Что происходит, когда ток в цепи, содержащей катушку индуктивности, включается? Он не возрастает мгновенно, а увеличивается плавно. Чем больше витков в катушке, тем более растянут во времени процесс нарастания тока. Но число витков влияет еще и на силу магнитного поля, создаваемого током в катушке!

Джозеф Генри установил связь этих явлений. Оказывается, чем больше индуктивность, тем более инерционный процесс возрастания тока при включении. Это можно сравнить с массой в механике: чем массивнее тело, тем дольше оно разгоняется при воздействии на него силы.

Почему в катушке тормозится увеличение тока? Мы наблюдаем здесь явление самоиндукции. Ведь ток создает магнитное поле, не так ли?

Но на этом преобразование полей не останавливается. Меняющееся магнитное поле создает электрическое поле! Если в поле находится проводник, в нем наводится электродвижущая сила. Это явление названо электромагнитной индукцией.

Именно меняющееся, переменное магнитное поле способно создать электрическое поле и навести в проводнике электрический ток.

После того, как щелкнул выключатель, в цепи происходят такие процессы:

  1. Появляется и начинает увеличиваться электрический ток;
  2. Возрастающий электрический ток создает меняющееся магнитное поле;
  3. Переменное магнитное поле в том же самом проводнике наводит электрическое напряжение, противоположное приложенному;
  4. Наведенная магнитным полем электродвижущая сила, противоположная напряжению от источника, уменьшает суммарное напряжение, действующее на цепь, а ток соответствует уменьшенному напряжению.

Напряжение, наведенное магнитным полем в проводнике, называется ЭДС самоиндукции. Ток в проводнике является причиной возникновения противоположного напряжения в том же проводнике, то есть причиной торможения тока является сам ток; поэтому процесс назван самоиндукцией.

Величина ЭДС самоиндукции зависит от скорости изменения тока и от индуктивности:

Минус в формуле указывает на то, что в цепи возникает противо ЭДС, направленная так, чтобы тормозить изменение тока.

В соответствии с этой формулой, единицу индуктивности 1 Генри определили следующим образом:

Один Генри – это индуктивность, при которой скорость изменения тока, равная одному амперу в секунду, приводит к наведению ЭДС самоиндукции, равной одному вольту.

1Вольт = — 1 Генри * 1 Ампер/секунда, или

1В = — 1 Гн * 1А/с

Индуктивность как мера самоиндукции проще поддается измерению, чем индуктивность – как коэффициент между током и магнитным потоком. В благодарность за открытие явления самоиндукции физики присвоили имя Джозефа Генри единице измерения индуктивности.

Энергия магнитного поля

Магнитное поле обладает энергией. Магнитные силы совершают механическую работу, притягивая или отталкивая другие магниты или тела из магнитных материалов. Меняющееся магнитное поле индуцирует электрический ток в проводниках.

Магнитную энергию можно выразить через математическую формулу. В предыдущем разделе упоминалась инерционность индуктивной цепи, ее роль в электромагнитных явлениях сравнивалась с ролью массы в механике. Интересно, что эта аналогия углубляется при рассмотрении энергии.

Формула энергии магнитного поля похожа на формулу кинетической энергии механического тела:

Энергия магнитного поля пропорциональна индуктивности и квадрату величины тока.

Во время переходного процесса, когда при включении ток в цепи замедленно нарастает, происходит накопление магнитной энергии. Эта энергия может использоваться для совершения работы. И эта энергия создает проблемы при выключении тока в цепи с большой индуктивностью.

Если ток уменьшать, возникнет ЭДС, замедляющая уменьшение тока. Но если ток выключить, резко разорвав цепь, скорость изменения тока от конкретного значения до нуля теоретически должна быть бесконечно велика. Это значит, ЭДС самоиндукции при выключении тока тоже должна быть бесконечно велика.

Этот математический парадокс возник из-за упрощенных идеализированных формул. В реальности ток не прекращается мгновенно, размыкание контактов занимает некоторый короткий промежуток времени, но все равно скорость изменения тока велика, и наводится ЭДС значительной величины. Обычным явлением при выключении цепи является искрение. Если выключать ток в цепи с большой индуктивностью, то попытка резкого прекращения тока может стать причиной вспышки электрической дуги.

Что произойдет, если дуга не вспыхнула, а ток прекратился? Куда девалась энергия магнитного поля? Частично она перешла в тепловую энергию – контакты выключателя нагрелись. Остальная часть энергии магнитного поля, при его резком уменьшении до нуля, перешла в электромагнитную волну. Переменное магнитное поле индуцировало переменное электрическое поле; в свою очередь, переменное электрическое вызвало новую волну магнитного, и так далее.

Выключение тока простым щелчком выключателя – посылает в бесконечное пространство широкий «шумовой» спектр электромагнитных колебаний.

Распрямим провод — индуктивность остается

Первоначально индуктивность считали атрибутом контура или катушки. Причина этого – в способах измерения. Магнитный поток через контур или катушку локализован, его можно измерить (хотя точность измерений долгое время была невысокой). Если катушку раскрутить и провод выпрямить, и пропускать ток по прямому проводу, магнитное поле все равно возникнет. Но померить его поток непросто!

А что произойдет с самоиндукцией? Ток в прямом проводе возрастает быстрее, чем в катушке. Но если провод протянуть на несколько километров (построить линию электропередач), то явление самоиндукции наблюдается. Возрастание тока, при его подаче в линию передач, происходит не мгновенно. Значит, прямой провод обладает индуктивностью, хотя и меньшей, чем катушка.

На рисунке показан проводник с током и силовые линии магнитного поля, имеющие форму окружностей.

Индуктивность и реактивное сопротивление

Катушка индуктивности может оказывать ничтожно малое сопротивление установившемуся постоянному току, но ее сопротивление переменному току значительно. Такое сопротивление называется реактивным.

Реактивное сопротивление переводит энергию электрического тока в энергию электромагнитного поля. Если на цепь, обладающую индуктивностью L , подать переменное напряжение с частотой f, то реактивное сопротивление будет равно

Чем выше реактивное сопротивление, тем меньше будет переменный ток.

Реактивное сопротивление зависит от частоты. Элементы с маленькой индуктивностью создают ничтожно малое сопротивление на низких частотах, но при переходе от частоты 50 Герц к частоте 50 МГц (мегагерц) сопротивление возрастает в миллион раз.

При низких частотах не принимаются во внимание индуктивности небольших отрезков провода, но при сотнях мегагерц и при гигагерцах приходится учитывать даже индуктивность проволочных выводов радиодеталей. В технике сверхвысоких частот применяются безкорпусные элементы, не имеющие проволочных выводов. Вместо них – контактные площадки, которые паяют на печатную плату.

Цепь с индуктивным сопротивлением, при подаче переменного тока, излучает электромагнитные волны. Но возможен и обратный процесс: при воздействии электромагнитного поля в индуктивности наводится переменный ток.

Стиральная машина и индуктивное сопротивление

Пользователи автоматических стиральных машин часто жалуются на то, что ток «пробивает на барабан». Электрическая изоляция таких машин, как правило, в полном порядке, но все равно есть неприятное ощущение от прикосновения к металлическому барабану, при загрузке и выгрузке вещей.

Причина – в наведенном токе. Машина-автомат имеет блок питания, в котором сетевое напряжение преобразуется в высокочастотное. Это высокочастотное напряжение наводится на все электропроводящие предметы, в частности на металлический барабан. Индуктивность барабана не нормируется, но наверняка она мала. Тем не менее, ток высокой частоты электронной схемы индуцирует на металлических частях стиральной машины отклик – небольшой ток.

Подобное явление иногда наблюдают пользователи современных водонагревателей с электронным управлением, греющих водопроводную воду. Если блок питания в устройстве оказывается близко к трубе с водой, на ней может наводиться переменный высокочастотный ток, и вода из крана «щиплется». Избежать неприятных ощущений можно, отключив электрическое напряжение от котла.

Индуктивность человеческого тела

Наше тело является электрическим проводником, а все проводники, в той или иной степени, обладают индуктивностью. Это значит, что мы подвержены воздействию электромагнитного поля, под его воздействием в нашем теле могут индуцироваться переменные токи.

Индуктивность человеческого тела значительно меньше. чем индуктивность антенны или дросселя, и небольшие электромагнитные поля практически не влияют на нас. Но чем выше мощность излучения, а главное – чем выше частота электромагнитного поля, тем воздействие сильнее. Сильное поле СВЧ диапазона представляет смертельную опасность.

Для защиты людей на производствах, связанных с сильными электромагнитными полями, применяют специальную экранирующую одежду, экранированные помещения. Существуют зоны, закрытые для посещения – вокруг мощных антенн, радиолокаторов.

Периодически появляется информация о вреде длительных разговоров по мобильному телефону, когда трубка прижата к голове. Телефон излучает высокочастотный электромагнитный сигнал небольшой мощности, из-за малой мощности его влияние незначительно. Но при длительном воздействии это излучение может нанести вред здоровью. Использовать скайп, установленный на компьютер, предпочтительнее.

Электрический ток, проходящий по контуру, создает вокруг него магнитное поле. Магнитный поток Φ через контур этого проводника (его называют собственным магнитным потоком ) пропорционален модулю индукции В магнитного поля внутри контура \(\left(\Phi \sim B \right)\), а индукция магнитного поля в свою очередь пропорциональна силе тока в контуре \(\left(B\sim I \right)\).

Таким образом, собственный магнитный поток прямо пропорционален силе тока в контуре \(\left(\Phi \sim I \right)\). Эту зависимость математически можно представить следующим образом:

\(\Phi = L \cdot I,\)

Где L - коэффициент пропорциональности, который называется индуктивностью контура .

  • Индуктивность контура - скалярная физическая величина, численно равная отношению собственного магнитного потока, пронизывающего контур, к силе тока в нем:
\(~L = \dfrac{\Phi}{I}.\)

В СИ единицей индуктивности является генри (Гн):

1 Гн = 1 Вб/(1 А).

  • Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб.

Индуктивность контура зависит от размеров и формы контура, от магнитных свойств среды, в которой находится контур, но не зависит от силы тока в проводнике. Так, индуктивность соленоида можно рассчитать по формуле

\(~L = \mu \cdot \mu_0 \cdot N^2 \cdot \dfrac{S}{l},\)

Где μ - магнитная проницаемость сердечника, μ 0 - магнитная постоянная, N - число витков соленоида, S - площадь витка, l - длина соленоида.

При неизменных форме и размерах неподвижного контура собственный магнитный поток через этот контур может изменяться только при изменении силы тока в нем, т.е.

\(\Delta \Phi =L \cdot \Delta I.\) (1)

Явление самоиндукции

Если в контуре проходит постоянный ток, то вокруг контура существует постоянное магнитное поле, и собственный магнитный поток, пронизывающий контур, не изменяется с течением времени.

Если же ток, проходящий в контуре, будет изменяться со временем, то соответственно изменяющийся собственный магнитный поток, и, согласно закону электромагнитной индукции, создает в контуре ЭДС.

  • Возникновение ЭДС индукции в контуре, которое вызвано изменением силы тока в этом контуре, называют явлением самоиндукции . Самоиндукция была открыта американским физиком Дж. Генри в 1832 г.

Появляющуюся при этом ЭДС - ЭДС самоиндукции E si . ЭДС самоиндукции создает в контуре ток самоиндукции I si .

Направление тока самоиндукции определяется по правилу Ленца: ток самоиндукции всегда направлен так, что он противодействует изменению основного тока. Если основной ток возрастает, то ток самоиндукции направлен против направления основного тока, если уменьшается, то направления основного тока и тока самоиндукции совпадают.

Используя закон электромагнитной индукции для контура индуктивностью L и уравнение (1), получаем выражение для ЭДС самоиндукции:

\(E_{si} =-\dfrac{\Delta \Phi }{\Delta t}=-L\cdot \dfrac{\Delta I}{\Delta t}.\)

  • ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока в контуре, взятой с противоположным знаком. Эту формулу можно применять только при равномерном изменении силы тока. При увеличении тока (ΔI > 0), ЭДС отрицательная (E si < 0), т.е. индукционный ток направлен в противоположную сторону тока источника. При уменьшении тока (ΔI < 0), ЭДС положительная (E si > 0), т.е. индукционный ток направлен в ту же сторону, что и ток источника.

Из полученной формулы следует, что

\(L=-E_{si} \cdot \dfrac{\Delta t}{\Delta I}.\)

  • Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Явление самоиндукции можно наблюдать на простых опытах. На рисунке 1 показана схема параллельного включения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последовательно с катушкой L . При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. Объясняется это тем, что на участке цепи с лампой 1 нет индуктивности, поэтому тока самоиндукции не будет, и сила тока в этой лампе почти мгновенно достигает максимального значения. На участке с лампой 2 при увеличении тока в цепи (от нуля до максимального) появляется ток самоиндукции I si , который препятствует быстрому увеличению тока в лампе. На рисунке 2 изображен примерный график изменения тока в лампе 2 при замыкании цепи.

При размыкании ключа ток в лампе 2 также будет затухать медленно (рис. 3, а). Если индуктивность катушки достаточно велика, то сразу после размыкания ключа возможно даже некоторое увеличение тока (лампа 2 вспыхивает сильнее), и только затем ток начинает уменьшаться (рис. 3, б).

Рис. 3

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются специальными выключателями.

Энергия магнитного поля

Энергия магнитного поля контура индуктивности L с силой тока I

\(~W_m = \dfrac{L \cdot I^2}{2}.\)

Так как \(~\Phi = L \cdot I\), то энергию магнитного поля тока (катушки) можно рассчитать, зная любые две величины из трех (Φ, L, I ):

\(~W_m = \dfrac{L \cdot I^2}{2} = \dfrac{\Phi \cdot I}{2}=\dfrac{\Phi^2}{2L}.\)

Энергию магнитного поля, заключенную в единице объема пространства, занятого полем, называют объемной плотностью энергии магнитного поля:

\(\omega_m = \dfrac{W_m}{V}.\)

*Вывод формулы

1 вывод.

Подключим к источнику тока проводящий контур с индуктивностью L . Пусть за малый промежуток времени Δt сила тока равномерно увеличится от нуля до некоторого значения I I = I ). ЭДС самоиндукции будет равна

\(E_{si} =-L \cdot \dfrac{\Delta I}{\Delta t} = -L \cdot \dfrac{I}{\Delta t}.\)

За данный промежуток время Δt через контур переносится заряд

\(\Delta q = \left\langle I \right \rangle \cdot \Delta t,\)

где \(\left \langle I \right \rangle = \dfrac{I}{2}\) - среднее значение силы тока за время Δt при равномерном его возрастании от нуля до I .

Сила тока в контуре с индуктивностью L достигает своего значения не мгновенно, а в течение некоторого конечного промежутка времени Δt . При этом в цепи возникает ЭДС самоиндукции E si , препятствующая нарастанию силы тока. Следовательно, источник тока при замыкании совершает работу против ЭДС самоиндукции, т.е.

\(A = -E_{si} \cdot \Delta q.\)

Работа, затраченная источником на создание тока в контуре (без учета тепловых потерь), и определяет энергию магнитного поля, запасаемую контуром с током. Поэтому

\(W_m = A = L \cdot \dfrac{I}{\Delta t} \cdot \dfrac{I}{2} \cdot \Delta t = \dfrac{L \cdot I^2}{2}.\)

2 вывод .

Если магнитное поле создано током, проходящим в соленоиде, то индуктивность и модуль индукции магнитного поля катушки равны

\(~L = \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S, \,\,\, ~B = \dfrac {\mu \cdot \mu_0 \cdot N \cdot I}{l}\)

\(I = \dfrac {B \cdot l}{\mu \cdot \mu_0 \cdot N}.\)

Подставив полученные выражения в формулу для энергии магнитного поля, получим

\(~W_m = \dfrac {1}{2} \cdot \mu \cdot \mu_0 \cdot \dfrac {N^2}{l} \cdot S \cdot \dfrac {B^2 \cdot l^2}{(\mu \cdot \mu_0)^2 \cdot N^2} = \dfrac {1}{2} \cdot \dfrac {B^2}{\mu \cdot \mu_0} \cdot S \cdot l.\)

Так как \(~S \cdot l = V\) - объем катушки, плотность энергии магнитного поля равна

\(\omega_m = \dfrac {B^2}{2\mu \cdot \mu_0},\)

где В - модуль индукции магнитного поля, μ - магнитная проницаемость среды, μ 0 - магнитная постоянная.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 351-355, 432-434.
  2. Жилко В.В. Физика: учеб. пособие для 11-го кл. общеобразоват. учреждений с рус. яз. Обучения с 12-летним сроком обучения (базовый и повышенный уровни) / В.В. Жилко, Л.Г. Маркович. - Мн.: Нар. асвета, 2008. - С. 183-188.
  3. Мякишев, Г.Я. Физика: Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. - М.: Дрофа, 2005. - С. 417-424.

Индуктивность
Единица индуктивности
Самоиндукция
Энергия магнитного поля

Индуктивность. Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток Ф через контур из этого проводника пропорционален модулю индукции магнитного поля внутри контура, а индукция магнитного поля в свою очередь пропорциональна силе тока в проводнике. Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Ф = LI . (55.1)

Коэффициент пропорциональности L между силой тока I в контуре и магнитным потоком Ф , создаваемым этим током, называется индуктивностью. Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности. За единицу индуктивности в Международной системе принимается генри (Гн). Эта единица определяется на основании формулы (55.1):

Индуктивность контура равна 1 Гн, если при силе постоянного тока 1 А магнитный поток через контур равен 1 Вб:

Самоиндукция. При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке. Явление возникновения ЭДС индукции в электрической цепи в результате изменения силы тока в этой цепи называется самоиндукцией.
В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.
Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока (рис. 197).

Резистор должен иметь такое же электрическое сопротивление, как и провод катушки. Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке. При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.
ЭДС самоиндукции , возникающая в катушке с индуктивностью L , по закону электромагнитной индукции равна

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.
Используя выражение (55.3), можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 А за 1 с в нем возникает ЭДС самоиндукции 1 В.



Энергия магнитного поля. При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции. Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.
Энергию магнитного поля катушки индуктивности можно вычислить следующим способом. Для упрощения расчета рассмотрим такой случай, когда после отключения катушки от источника ток в цепи убывает со временем по линейному закону. В этом случае ЭДС самоиндукции имеет постоянное значение, равное

где t - промежуток времени, за который сила тока в цепи убывает от начального значения I до 0.
За время t при линейном убывании силы тока от I до 0 в цепи проходит электрический заряд:

поэтому работа электрического тока равна

Эта работа совершается за счет энергии магнитного поля катушки.
Энергия магнитного поля катушки индуктивности равна половине произведения ее индуктивности на квадрат силы тока в ней:

(по материалам пособия "Физика - справочные материалы" Кабардин О.Ф.)

Мы уже изучили, что около проводника с током возникает магнитное поле. А также изучили, что переменное магнитное поле порождает ток (явление электромагнитной индукции). Рассмотрим электрическую цепь. При изменении силы тока в этой цепи произойдет изменение магнитного поля, в результате чего в этой же цепи возникнет дополнительный индукционный ток . Такое явление называется самоиндукцией , а ток, возникающий при этом, называется током самоиндукции .

Явление самоиндукции - это возникновение в проводящем контуре ЭДС, создаваемой вследствие изменения силы тока в самом контуре.

Индуктивность контура зависит от его формы и размеров, от магнитных свойств окружающей среды и не зависит от силы тока в контуре.

ЭДС самоиндукции определяется по формуле:

Явление самоиндукции подобно явлению инерции . Так же, как в механике нельзя мгновенно остановить движущееся тело, так и ток не может мгновенно приобрести определенное значение за счет явления самоиндукции. Если в цепь, состоящую из двух параллельно подключенных к источнику тока одинаковых ламп, последовательно со второй лампой включить катушку, то при замыкании цепи первая лампа загорается практически сразу, а вторая с заметным запаздыванием.

При размыкании цепи сила тока быстро уменьшается, и возникающая ЭДС самоиндукции препятствует уменьшению магнитного потока. При этом индуцированный ток направлен так же, как и исходный. ЭДС самоиндукции может во многом раз превысить внешнюю ЭДС. Поэтому электрические лампочки очень часто перегорают при выключении света.

Энергия магнитного поля

Энергия магнитного поля контура с током.

Новое на сайте

>

Самое популярное