Домой Другое Фундамент ниже глубины промерзания грунта. Возведение фундамента заложенного на глубину промерзания почвы Уменьшение глубины промерзания грунта

Фундамент ниже глубины промерзания грунта. Возведение фундамента заложенного на глубину промерзания почвы Уменьшение глубины промерзания грунта

Одним из самых востребованных в наши дни является ленточный фундамент. Его основные преимущества – длительный срок службы, надежность, несложное изготовление без применения грузоподъемных механизмов. Заложение бетонной ленты осуществляется с учетом климатических и геологических условий, а также особенностей проекта. Перед началом строительства всегда рассчитывается глубина заложения и другие размеры фундамента – это позволит избежать осадки сооружения под влиянием деформаций грунта и подпочвенных вод.

При выборе размерных параметров основания дома обращают внимание на три основных фактора.

1. Плотность грунта.

Если он отличается высокой степенью однородности и прочности, средняя глубина расположения фундаментной ленты составляет 0,5 м. К этой группе относятся каменистые почвы, хрящеватые смеси (песок с глиной и щебнем), песчаные грунты с малой толщиной промерзания. На пучинистых почвах (глины, супеси, суглинки), накапливающих в порах много влаги, рекомендуется довести уровень закладки основы до 0,7 м. На слабых подвижных грунтах глубина заложения ленты зависит от уровня залегания твердой почвы (максимум – 2,5 м).

2. Глубина промерзания.

Существует мнение, что фундамент следует располагать ниже уровня промерзания. Но конструкция (особенно если это легкое каркасное строение) все равно будет неустойчивой из-за морозного пучения. Хотя промерзающий грунт не будет давить на подошву, он будет действовать на стенки ленты. Поэтому довольно часто ленту закладывают на отметке, равной половине глубины промерзания грунта (ГПГ). При этом учитывают, что подошва должна отстоять от уровня почвы не менее чем на 0,5-0,6 м. Влияние пучения уменьшают с помощью конструктивных решений: трапециевидной формы опалубки (она сужается кверху), защитных экранов для ленты, засыпки пазух непучинистым грунтом, прокладки водоотводных каналов.

3. Уровень залегания грунтовых вод.

Если они расположены ниже ГПГ, то глубина заложения ленты от них не зависит. При прохождении русла подземных вод выше отметки промерзания грунта фундамент опускают до уровня ГПГ.

Кроме названных факторов, на степень заглубления ленточного основания влияют класс строения (планируемая долговечность постройки), рельеф участка, общий вес сооружения. Большое значение имеет уровень прокладки коммуникаций: все они должны быть смонтированы выше фундаментной подошвы. Если возводится , ее основание обустраивают несколько выше (учитывая будущую осадку), обязательно предусмотрев песчаную подушку.

Главная цель при составлении проекта – определить глубину, на которой несущий слой грунта вместе с подсыпкой обеспечит равномерную осадку здания, причем ее значение не должно быть выше максимально допустимого предела.

Расчет глубины заложения

Если по разным причинам невозможно проведение геологических изысканий для оценки участка, застройщик способен самостоятельно вычислить глубину закладки ленты на основании СП «Основания зданий и сооружений». В качестве примера приводится расчет в Московской области.

1. Определение нормативной глубины промерзания в метрах:

d fn = d 0 х √M t

Нормативное значение d 0 выбирается по таблице, в зависимости от типа грунта: чем он плотнее, тем больше число. Например, для супесей d 0 = 0,28, а для суглинков – 0,23. M t – сумма модулей (абсолютных значений) средних отрицательных температур за зимний период (в средней полосе он продолжается с ноября по март). Для Москвы этот показатель равен 22,9 (таблица 5.1 «Строительная климатология»). Подставив числа в формулу, получают

d fn = 0,28 х √ 22,9 = 1,34 м

2. Определение расчетной глубины промерзания:

d f = k h х d fn

Коэффициент k h зависит от типа сооружения и среднесуточной температуры в помещении, которое примыкает к наружному фундаменту. Для отапливаемых зданий значение коэффициента колеблется от 0,4 (дом с подвалом) до 1,0 (дом без подвала с полом на лагах). Для неотапливаемых сооружений k h = 1,1.Если пол устроен по грунту, а среднесуточная температура составляет 5°C, то k h = 0,8. Подставляем это значение в формулу:

d f = 0,8 х 1,34 = 1,07 м

3. Определение глубины основы в зависимости от уровня грунтовых вод d w . Нужное значение выбирают по таблице 1.

Таблица 1.

Без геологических исследований, не зная уровня грунтовых вод, лучше заложить ленту на глубине не менее чем d f , то есть 1,07 м.

Особенности ленточного основания мелкого заложения

Если возводится одноэтажный дом из кирпича ибо пеноблоков (без подвала), каркасное строение, бревенчатый сруб, дачный домик, баня, сарай или забор, то их основанием вполне может стать мелкозаглубленный ленточный фундамент (МЗЛФ). Конструктивно он похож на заглубленный аналог, но имеет также существенные отличия:

  • средняя глубина закладки – 0,7 м;
  • расположение над зоной промерзания;
  • служит основанием для строений, возводимых в основном на пучинистых почвах.

Фундамент мелкого заложения способен нейтрализовать разрушительное влияние морозного пучения грунта. При этом здание или забор, жестко соединенные с МЗЛФ, «плавают» вместе с ним в вертикальном направлении во время сезонных подвижек глинистого или песчаного грунта. За счет того, что глубина заложения небольшая, смещение осуществляется равномерно, не сопровождаясь образованием трещин.

Глубина заложения мелкозаглубленной ленты должна быть на 20 % меньше уровня промерзания почвы. В основании фундамент укрепляют с помощью непучинистой подушки толщиной 0,2-0,8 м. Именно такой слой должен составлять один из следующих материалов: щебень, шлак, гравий, крупный песок, песчано-гравийная смесь (ПГС). Подушка нивелирует деформации, возникающие при расширении и сужении пучинистого грунта, и фактически заменяет его собой.

Ленточное мелкозаглубленное основание рассчитывают по стандартной методике. Если строительство выполняется своими силами, для определения основных параметров фундамента одноэтажного сооружения можно воспользоваться таблицей.

Таблица 2.

Выбор размеров ленточного фундамента (мелкое заложение) и типа армирования

Тип грунта Описание сооружения Ширина подошвы фундамента, м Толщина подсыпной подушки, м Диаметр арматуры, мм; число стержней в поясе; число стержней в сечении фундамента
Среднепучинистый, глина и песок Кирпичная кладка, пенобетон; перекрытия из железобетона 0,6 0,3 10; 2; 4
Сильнопучинистый, глина и песок 0,6 0,5 14; 3; 6
Отапливаемое каркасное строение;

дом из бруса;

деревянные перекрытия

0,4 — 0,3 0,2 10; 3; 6
0,4 — 0,3 0,4 12; 3; 6
Среднепучинистый, глина, суглинок, супесь, песок Летняя дача из бруса или бревен; 0,3 — 0,2 0,6 — 0,7 12; 2; 4
Сильнопучинистый, глина, суглинок, супесь, песок 0,3 — 0,2 0,7 — 0,8 12; 3; 6

Технология строительства основания

Заложение ленточного мелкозаглубленного фундамента под дом или забор выполняется в определенной последовательности.

1. Выравнивание грунта в пятне застройки, прокладка водоотводных каналов.

2. Разметка участка и земляные работы. Наносят линии контура стен и простенков здания и роют траншеи (глубина — 0,5-1,5 м). Если строится отапливаемый дом или баня, следует заложить фундамент под печью или камином.

3. Выстилание геотекстилем. С помощью него предотвращают заиливание подушки, если глубина поверхностных грунтовых вод выше, чем закладывается фундамент. Нетканый сверхплотный материал (например, дорнит) погружают на дно траншей и запускают на их боковые стенки, делая запас с каждой стороны, равный толщине подушки.

4. Подушка. Постепенно насыпают ПГС, после каждых 10-15 см тщательно уплотняют ее с помощью ручной трамбовки или вибратора, затем укрывают оставленными по бокам полотнищами дорнита.

5. Установка опалубки и армирование. Сетки, связанные из арматурных стержней и проволоки, размещают в нижней и верхней зонах. При этом глубина заложения в бетон составляет около 5 см. Нижний армопояс предотвращает прогиб ленты вниз, а верхний не дает ей выгнуться вверх.

6. Заливка бетона. Ленту заливают непрерывно, в один прием.

7. Демонтаж опалубки и вертикальная гидроизоляция. Ее производят, когда схватится бетонная смесь – летом этот момент наступает через 3-5 дней. Ленту по бокам обрабатывают битумно-каучуковой мастикой или проникающей гидроизоляцией (например, Пенетроном).

8. Обратная засыпка пазух. При снятии опалубки вокруг ленточного мелкозаглубленного фундамента образуются полости, заполняемые песком или глиной. В первом случае водопроницаемый материал уменьшает воздействие сил морозного пучения, но способствует накоплению влаги в засыпке и снижению ее несущей способности. Если выбрана глина, она создаст так называемый глиняный замок, предохраняющий от воды.

Любая постройка нуждается в качественном, надежном, правильно спроектированном и обустроенном основании – фундаменте. Он является опорной площадкой, принимающей на себя и обеспечивающей распределение как нагрузок, создаваемых зданием, так и сил воздействия грунта, атмосферных явлений и прочих внешних факторов.

Одним из важнейших этапов проектирования опорной конструкции, вне зависимости от ее разновидности, является определение требуемой глубины заложения. Многие застройщики ошибочно полагают (и многочисленные инструкции, составленные неквалифицированными авторами, лишь усугубляют положение дел), что глубину заложения фундамента нужно определять, ориентируясь исключительно на уровень промерзания грунта. Да, это один из наиболее значимых показателей, но в действительности факторов, требующих учета и анализа, гораздо больше: особенности постройки, инженерно-геологические условия, рельеф площадки, уровень прохождения подземных вод и т.д.

Способы закладки фундамента

Знание методики определения необходимой глубины заложения опоры позволит вам спроектировать и получить в итоге максимально надежную конструкцию, способную служить десятки лет безо всяких проблем и нареканий. Даже если вы планируете поручить обустройство опоры сторонним специалистам, разобравшись в нюансах рассматриваемого расчета, вы сможете проконтролировать правильность выполняемых ими действий, т.к. неверный выбор глубины заложения в будущем приведет к катастрофическим последствиям – начнутся процессы деформации и последующего разрушения опоры, а вместе с ней и вышестоящего здания.

Следуя элементарной логике, можно прийти к примерно такому выводу: чем глубже заложишь фундамент, тем лучше он будет противостоять всевозможным воздействиям, и тем дольше прослужит. На практике ситуация обстоит иным образом. Далее вам предлагается ознакомиться с самыми популярными мифами о глубине заложения фундамента и узнать, как нужно делать правильно.

Глубже строишь – дольше служит

Даже опытные труженики сферы строительства нередко заблуждаются, полагая, что внушительная глубина заложения при любых обстоятельствах является гарантией надежности и долговечности конструкции. В некоторых ситуациях это срабатывает, но не стоит думать, что большая глубина заложения основания будет являться 100%-м залогом высокой прочности опоры.

На практике обязательно выполняется квалифицированный и довольно объемный расчет, предполагающий предварительное проведение инженерно-геологических исследований, определение типа почвы на участке, нахождение уровня прохождения грунтовых вод и т.д. Многое зависит и от конструктивных особенностей возводящегося здания (материал, число этажей, надстройки и т.п.). К примеру, к фундаменту для бани при прочих равных условиях будут предъявляться менее строгие требования, нежели к опоре, рассчитанной на использование в комплексе с жилым домом, но к определению оптимальной глубины заложения нужно одинаково ответственно и грамотно подходить в обоих случаях.

Полезный совет! Вышеперечисленные моменты интересным и понятным простому обывателю языком подробно изложены в книге «Не зарывайте фундаменты вглубь» под авторством В.С. Сажина. Рекомендуем к ознакомлению.

Файл для скачивания – В.С. Сажин «Не зарывайте фундаменты вглубь». Расчеты, таблицы, конструкция фундаментов, правила выбора опорных конструкций, правила армирования

Одна лишь глубина важна?

Как отмечалось, фундамент не во всех ситуациях должен быть заглубленным, даже если строительство ведется на не самом спокойном грунте – существуют строительные технологии, позволяющие увеличить твердость и плотность практически любой почвы. Ввиду этого, если запланировано строительство компактной частной бани, а не огромного жилого дома, в «закапывании денег в землю» не будет никакого смысла.

Наряду с этим, должны учитываться характерные особенности строительной площадки. К примеру, распространенной проблемой является высокое прохождение грунтовых вод. В случае возведения бани, этот вопрос можно решить посредством обустройства эффективного дренажа вокруг опорной конструкции, а не за счет заглубления фундамента.



Еще одной распространенной проблемой являются оползни. Наличие таковых может привести к катастрофическим последствиям в виде провисания, деформации и разрушения опорной конструкции. В данном случае целесообразнее будет заняться укреплением грунта, а не фундамента.





К примеру, в случае с песчаными грунтами хорошо проявляет себя технология силикатизации, предполагающая обработку грунта вокруг опорной конструкции с помощью смеси, включающей равные доли воды и жидкого стекла. Увлажненный таким составом песок тщательно утрамбовывается. В результате грунт становится более прочным.

Еще один эффективный способ предполагает использование специальных химических реагентов. В данном случае на строительной площадке пробуриваются небольшие скважины, через полученные углубления в землю вливаются смоляные составы, что приводит к эффективному упрочнению слабого грунта с минимальными финансовыми затратами.

Нормативно-технические положения

Положения в отношении оптимальной глубины заложения опорных конструкций закреплены соответствующей нормативной документацией. В данном случае это СНиП под номером 2.02.01-83.

Файл для скачивания. СНиП 2.02.01-83. СП 22.13330.2011. ОСНОВАНИЯ ЗДАНИЙ И СООРУЖЕНИЙ.

От чего зависит глубина заложения опорных конструкций?

На этом этапе проектирования внимание уделяется следующим моментам:

  • назначению и габаритам постройки, которая будет возводиться на опоре;
  • уровню нагрузок, создаваемых строением;
  • глубине обустройства опорных конструкций ближайших и примыкающих зданий;
  • уровню прохождения инженерных коммуникаций;
  • особенностям рельефа местности;
  • значимые инженерно-геологическим особенностям строительной площадки. Сюда входят: свойства почвы, особенности имеющихся напластований и т.п.;
  • гидрогеологическим особенностям местности и характеру их потенциальных изменений при проведении строительных работ и в ходе последующей эксплуатации конструкции;
  • вероятности размыва почвы у опорных конструкций, возводящихся неподалеку от водоемов;
  • показателю уровня сезонных промерзаний почвы.

При определении этого значения используется усредненный показатель наибольших ежегодных глубин промерзания. Для правильного проведения расчета нужно брать сведения, полученные в ходе минимум 10-летнего наблюдения. Непосредственно для наблюдений выбирается ровная не заснеженная площадка. Уровень грунтовых вод, при этом, должен быть ниже по отношению к показателю сезонного промерзания почвы.

Если результаты многолетних наблюдений отсутствуют (а именно так зачастую и случается) выполняются соответствующие теплотехнические расчеты. Для регионов, на территории которых почва не промерзает больше чем на 250 см, допустимо использование следующей формулы определения нормативного показателя глубины промерзания.

Коэффициент Mt в вышеприведенной формуле указывает на суммарное значение абсолютных среднемесячных минусовых температур зимой для конкретного региона. Эту информацию следует уточнить индивидуально, обратившись в ближайшую гидрометеорологическую станцию или ознакомившись с соответствующей справочной информацией.

Коэффициент d0 определяется по типу почвы на участке. Зависимость следующая:

  • глинистые и суглинистые грунты – 0,23 м;
  • пылеватые, мелкопесчанистые и супесные грунты – 0,28 м;
  • средние, крупные, а также гравелистые пески – 0,3 м;
  • крупнообломочные – 0,34 м.

Что такое расчетная глубина промерзания?

Для ее нахождения используется следующая формула.

Коэффициент dfn здесь указывает на нормативную глубину промерзания (руководство по определению этого показателя приводилось выше).

Показатель kh является коэффициентом, отсылающим к воздействию теплового режима строения. В случае с наружными опорными конструкциями отапливаемых зданий этот параметр берется из следующей таблицы.

При обустройстве же оснований неотапливаемых зданий данный коэффициент принимается равным 1,1.

Определение показателя расчетной глубины промерзания осуществляется в соответствии с теплотехническим расчетом и в тех ситуациях, когда опорная конструкция укомплектовывается постоянной теплоизоляцией. Также данное положение актуально для ситуаций, когда особенности температурной эксплуатации возводящегося здания могут оказывать значимое воздействие на температурные показатели почвы, к примеру, в случае с банями.

Показатель глубины заложения, актуальный для отапливаемых конструкций, также принимается в случае возведения внешних и внутренних оснований. Во втором случае расчетный показатель промерзания во внимание не принимается.

Расчетное значение также может не учитываться, если:

  • основание обустраивается на мелкопесчанистом грунте и в ходе исследований был подтвержден факт отсутствия пучинистости, а также в ситуациях, когда предварительные исследования и последующие расчетные мероприятия позволили установить, что деформационные процессы, возникающие в ходе промерзания-оттаивания грунта, не оказывают отрицательного воздействия на эксплуатационную пригодность конструкции;
  • запланировано проведение соответствующих мероприятий, направленных на исключение промерзания почвы.

Для нахождения глубины обустройства опорных конструкций отапливаемых зданий, планировка которых включает необогреваемые подполья и подвальные помещения, используйте следующую таблицу. Считайте от пола первого этажа до подвала.

От теории к практике

Ранее вы имели возможность ознакомиться с перечнем факторов, принимаемых во внимание в процессе проектирования фундамента, а также получили теоретическое представление об основных расчетных мероприятиях на этапе планирования основания. Теперь вам предлагается узнать, как проводится определение оптимальной глубины заложения на практике.

На что обращаем внимание?

Ранее приводился довольно обширный перечень факторов, определяющих оптимальную глубину заложения фундамента. На практике застройщики обращают внимание лишь на некоторые из них. Об этом в таблице.

Таблица. Факторы, определяющие глубину заложения

Факторы Пояснения
В ходе изучения инженерно-геологических условий определяется слой грунта, способный взять на себя функции естественного несущего основания для опорной конструкции.

На практике при определении глубины заложения придерживаются нижеперечисленных правил:

Глубина заложения – от 50-70 см;

Заглубление опорной конструкции в естественный несущий слой – от 10-20 см;

По возможности опорное основание закладывается ниже по отношению к грунтовым водам. Соблюдая это правило, застройщик избавляет себя от необходимости сооружения водоотлива. При этом будут отсутствовать нарушения природной структуры почвы. Если возможность заглубиться ниже уровня грунтовых вод ввиду каких-либо обстоятельств отсутствует, прибегают к обустройству водоотлива, шпунтованного крепления стенок ямы, в результате чего величина суммарных затрат на проведение необходимых земляных работ существенно возрастает.

Среди значимых климатических факторов, имеющих наибольшее значение при установлении глубины заложения опорных конструкций различного назначения, выделяют, во-первых, глубину промерзания почвы на участке, во-вторых, особенности оттаивания грунта, связанные, прежде всего, с уровнем прохождения подземных вод.

Некоторые типы грунтов в процессе промерзания поддаются пучению, т.е. увеличивают свой объем. В подобных условиях фундамент строения должен быть заложен строго ниже точки глубины промерзания.

К появлению упомянутого морозного пучения приводит преимущественно перемещение влаги, содержащейся в нижележащих грунтовых слоях, к фронту промерзания.

Ввиду этого, большое значение при определении оптимальной глубины обустройства опорной конструкции должно уделяться показателю уровня прохождения подземных вод в холодный период года.

К категории пучинистых относятся пылевато-глинистые грунты и разновидности грунтов, состоящие из мелкого и пылеватого песка. При выполнении строительных работ на таких почвах, глубину обустройства опоры определяют по показателю уровня промерзания, если подземные воды проходят менее чем на 200 см ниже точки промерзания.

Среди значимых конструктивных особенностей возводящегося строения, влияющих на итоговое значение глубины заложения основания, выделяют:

Наличие цокольных/подвальных помещений и их габариты;

Наличие приямков и их размерные характеристики;

Наличие и габариты опорных конструкций для различного оборудования, к примеру, банной печи;

Наличие подземных коммуникаций и их габаритные характеристики;

Характер нагрузок, поступающих на опорную конструкцию, и их величину.

Как правило, при наличии подземных помещений опорные конструкции заглубляют на 50 см ниже пола таковых. В случае обустройства столбчатой опорной конструкции, упомянутый показатель может увеличиваться до 150 см.

Важно! После определения оптимальной глубины заложения по всем значимым факторам, выбирается наибольший найденный показатель, и именно он используется в качестве расчетного.

Существует довольно много разновидностей опорных конструкций, среди которых наибольшее распространение в частном строительстве получили ленточный, столбчатый и плитный фундаменты. Далее вам предлагается ознакомиться с рекомендациями в отношении оптимальной глубины заложения каждого из них.

Ленточные опоры

Фундамент ленточного типа занимает первое место по популярности среди частных застройщиков. Такие конструкции характеризуются более легким возведением и меньшими финансовыми затратами, если сравнивать с монолитными плитными опорами.

Конструкция ленточного основания представляет собой армированную бетонную полосу, обустраиваемую под стенами и перегородками строения. Основание принимает нагрузки, создаваемые вышестоящим строением, и обеспечивает их равномерное распределение на грунт.

Важно! Показатель несущей способности почвы на участке должен превышать нагрузки, передаваемые фундаментной конструкцией от здания. Сведения в отношении необходимых подробно освящались в соответствующей публикации.

Основание ленточного типа подходит для использования на однородных грунтах с отсутствующей либо слабовыраженной пучинистостью. Лучше, чтобы грунтовые воды проходили как можно ниже. Не рекомендуется обустраивать бетонные ленты на подтапливаемых территориях.

Рассматриваемый фундамент запрещен к использованию на торфяных и прочих биогенных органических почвах. Также от применения такой конструкции следует воздерживаться, если строительный участок располагается на неоднородной почве либо на стыке различающихся типов грунтов. Не рекомендуется использовать ленточный фундамент на водонасыщенном пылеватом песчаном грунте и водонасыщенных глинистых грунтах.

При определении конфигурации и геометрических параметров опорного основания нужно учитывать нижеперечисленные факторы:

  • нагрузки, создаваемые вышестоящим зданием;
  • характеристики почвы (пучинистость, показатели несущей способности);
  • климат на местности;
  • свойства строительных материалов.

Минимально допустимую глубину обустройства ленточной опорной конструкции определяют по уровню промерзания почвы, высоте залегания подземных вод, а также особенностям пучинистости грунта. Зависимость следующая: чем глубже промерзает грунт и чем ближе вода проходит к поверхности, тем сильнее пучинистость почвы, и тем более выраженное воздействие оказывается на опору снизу. Под воздействием данных сил основание будет сдавливаться и выталкиваться вверх. Для уменьшения интенсивности выраженности этих воздействий и осуществляется заглубление фундамента.

Полезный совет! Помимо заглубления опорной конструкции, выраженность показателей морозного пучения почвы может регулироваться посредством обеспечения теплоизоляции опоры, монтажа несъемной теплозащищенной опалубки на этапе обустройства фундамента, а также путем обеспечения водоотведения и организации дренажа, уплотнения грунта, его частичной либо полной замены.

В соответствии с актуальными строительными нормами, наименьшее допустимое заглубление ленточной бетонной опоры на всех малопучинистых и непучинистых почвах (за исключением глинистого и скального грунтов) составляет 450 мм. При работе на скальном грунте, ввиду физической невозможности обеспечения значительного заглубления, допускается обустройство опорной конструкции непосредственно на поверхности почвы. При обустройстве ленточной опорной конструкции на глинистых почвах и прочих грунтах пучинистого типа, основание заглубляется минимум на 750 мм (в среднем выдерживают 90-100-сантиметровый показатель).

Если грунт чрезмерно мягкий и присутствует вероятность его подвижности (в эту группу входят водонасыщенные почвы, супеси, пески), а также при низких показателях несущей способности поверхностных грунтовых слоев, ленточный фундамент может быть заглублен до уровня расположения шаров грунта, характеризующихся стабильными свойствами и более высокой несущей способностью.

В качестве ориентиров можете использовать значения, приведенные в следующей таблице.

Расчетная глубина промерзания условно непучинистого грунта Расчетная глубина промерзания слабо пучинистого грунта твердой и полутвердой консистенции
до 2 метров до 1 метра 0,5 м
до 3 метров до 1,5 метров 0,75 м
более 3 метров от 1,5 до 2,5 метров 1 м
от 2,5 до 3,5 метров 1,5 м

Полезный совет! Вне зависимости от условий на местности, максимальным допустимым показателем заглубления в экономическом и в целом разумном плане является 250 см.

Если фундамент обустраивается на песчаном непучинистом грунте, на показатель глубины промерзания можно не обращать внимания. Также избавиться от зависимости с глубиной промерзания можно при обеспечении вертикального утепления фундамента и горизонтальной теплоизоляции грунта.

Приведенные выше значения могут претерпевать изменения, если грунтовые воды располагаются относительно близко к поверхности. При таких обстоятельствах фундамент придется заглублять на более существенный уровень. Можете ориентироваться на значения, приведенные в следующей таблице.

Владельцам участков, расположенных на пучинистых почвах с высокими грунтовыми водами, следует подумать над использованием другой опорной конструкции, к примеру, свайно-ростверковой. Такому основанию не страшны грунтовые воды и морозные пучения.

Показатели нормативной глубины промерзания представлены в таблице.

В основе этой конструкции – опорные столбы, обустраиваемые в углах строения и на пересечениях стен и перегородок. При необходимости дополнительные опоры сооружаются под тяжелыми простенками, массивными балками и в прочих участках, характеризующихся увеличенной нагрузкой.

В целях обеспечения равномерности распределения нагрузок, создаваемых вышестоящим строением, а также организации работы столбов в качестве цельной опорной конструкции и для увеличения устойчивости фундамента к воздействующим на него силам, обустраивается ростверк, представленный обвязочными балками, соединяющими элементы опорной конструкции.

  • при возведении строений, не имеющих подвальных помещений;
  • при строительстве зданий с легкими стенами, выполненными по каркасной, щитовой и подобным технологиям;
  • при возведении кирпичных стен при наличии необходимости обеспечения глубокого заложения;
  • при более высокой устойчивости столбчатого фундамента к осадочным процессам в почве (по сравнению с другими разновидностями фундаментов);
  • при необходимости максимального минимизирования выраженности сил морозного пучения (столбы в меньшей степени подвержены упомянутому явлению по сравнению с ленточными и плитными конструкциями);
  • при прочих условиях, когда использование ленточного фундамента является экономически невыгодным или нецелесообразным ввиду каких-либо обстоятельств.

Столбчатая опорная конструкция имеет ряд преимуществ.

Во-первых, на ее обустройство обычно затрачивается не более 20% от расходов на весь дом (для сравнения, в случае с фундаментами других типов этот показатель может возрастать до 30% и более).

Во-вторых, через отдельные опоры происходит более эффективное распределение нагрузок, нежели посредством сплошного ленточного основания. Столбы обеспечивают равнозначные показатели давления на почву, в результате чего отмечается уменьшение выраженности осадки по сравнению с ранее рассмотренными ленточными конструкциями. Благодаря этому появляется возможность уменьшения суммарной площади основания.

Опорно-столбчатая конструкция – фото

При определении оптимального показателя глубины заложения столбов, обращают внимание на нижеперечисленные факторы:

  • глубину промерзания почвы. Этот параметр остается значимым при проектировании любого фундамента. В идеале столбы должны быть заглублены на 20-30 см ниже упомянутой отметки, но необходимость в этом возникает не всегда. Исключительные случаи будут рассмотрены отдельно;
  • тип грунта и особенности его состава. Лучший вариант – песчаный грунт. Вода практически мгновенно проходит через такую почву, плюс ее несущая способность сохраняется на очень высоком уровне. От строительства на торфяниках и илистых грунтах следует воздерживаться. Единственный возможный вариант в данном случае сводится к частичной (еще лучше – полной) замене имеющейся почвы песчаником;
  • глубину залегания подземных вод. Этот момент определяется в ходе соответствующих предшествующих исследований. Практически 100%-м подтверждением высокого уровня грунтовых вод может служить наличие поблизости любого природного водоема. В данном случае прибегают к организации систем дренажа или устройству гидроизоляции.

Помимо природных факторов, проектировщик должен обращать внимание на нижеперечисленные положения:

  • предполагаемый вес готового строения;
  • вес опорных столбов;
  • вес предметов внутреннего обустройства постройки и находящихся в ней людей;
  • временные нагрузки, к примеру, снег.

Наиболее выраженное отрицательное воздействие на опорные конструкции оказывают силы морозного пучения. Ввиду этого, строительству практически любого фундамента предшествует оценка степени пучинистости грунта. Большинство застройщиков придерживается принципа, в соответствии с которым при работе на грунтах пучинистого типа фундаменты закладываются в среднем на 200-300 мм ниже расчетного показателя глубины промерзания в холодное время года. Наряду с этим, возведение малонагруженных построек, к примеру, таких как частная баня, имеет свои исключительные особенности.

Фундаменты подобных строений подвергаются силам пучения, в большинстве случаев превосходящим общие нагрузки, создаваемые вышерасположенным строением. Из-за такой разности по итогу и происходят разнообразные деформации опоры.

Ввиду этого, планируя постройку бани или любого другого здания без подвального помещения на грунте, склонном к сезонному пучению, лучше отдавать предпочтение незаглубленной либо мелкозаглубленной разновидности опорной конструкции.

Мелкозаглубленными называют опоры, глубина заложения которых составляет 50-70% от нормативного показателя промерзания почвы. К примеру, в соответствии с нормативным показателем грунт промерзает на 150 см. В данном случае мелкозаглубленный фундамент надо заглублять минимум на 75 см.

Если грунт является пучинистым и глубоко промерзает, придется делать заглубленную опорную конструкцию, обустраиваемую, как уже отмечалось, в среднем на 20-30 см ниже точки промерзания. При таких обстоятельствах хорошо себя показывают сборные и монолитные столбы из армированного бетона. Подобные конструкции в незначительной мере подвержены воздействию сил пучения.

Если для обустройства опор применяются камни, неармированный бетон, мелкие блоки, кирпич, стены фундамента должны сужаться кверху – благодаря этому будет, во-первых, обеспечено равномерное распределение нагрузок, создаваемых строением, во-вторых, уменьшен расход строительных материалов.

Среди дополнительных мер, способствующих уменьшению выраженности сил морозного пучения, следует отметить нижеперечисленные положения:

  • покрытие боковин столбов материалами, способствующими уменьшению трения почвы. К числу таких материалов относятся разнообразные пластичные смазки, полимерные пленки, эпоксидные смолы, битумные мастики и т.д.;
  • утепление верхнего шара грунта вокруг опорной конструкции. Прекрасным вариантом является сооружение утепленной отмостки.

Есть ряд ограничений, наличие которых является прямым противопоказанием к применению столбчатых опор.

  1. Во-первых, столбчатый фундамент нельзя использовать на слабых грунтах, а также почвах, склонных к горизонтальным подвижкам, т.к. столбы характеризуются малой стойкостью к опрокидываниям. Чтобы нивелировать боковые сдвиги, обустраивается жесткий армированный ростверк. В случае его применения затраты на возведение столбчатого фундамента практически уровняются с расходами на заливку армированной ленты.

  2. Во-вторых, столбы лучше не обустраивать на участках, расположенных на слабонесущих (торфяных, водонасыщенных глинистых и т.п.) грунтах, в особенности в случае возведения тяжелых домов (с использованием железобетонных плит перекрытия, с кирпичными стенами толщиной от 50 см и т.д.).

  3. В-третьих, лучше не строить ничего на столбчатых опорах, если участок расположен в местности с существенными перепадами высот (более 200 см).

    На участках со сложным рельефом столбчатое основание – не лучший вариант

Плитные опоры

Монолитная плитная опорная конструкция характеризуется высокими показателями надежности, прочности и долговечности, но и требует соответствующих трудовых и материальных вложений на обустройство. Применение таких опор является целесообразным при работе на слабых разновидностях грунтов, к примеру, почвах с высоким содержанием органики.

В случае использования плиты отмечается уменьшение давления на почву. Происходит это по той причине, что плита опирается на основание всей поверхностью, благодаря чему обеспечивается равномерное распределение нагрузок, создаваемых вышестоящим строением.

На плитном фундаменте можно строить здания из любых материалов. В особенности часто подобные опоры выбираются для применения в комплексе с каменными конструкциями, т.е. строениями, возведенными из блоков, кирпичей и т.п.

Как и в случае с вышерассмотренными разновидностями оснований, глубину заложения определяют в соответствии с характерными особенностями грунта и нагрузками, создаваемыми строением: чем они выше, тем толще делается плита и тем глубже она закладывается.

Плитные фундаментные конструкции не заглубляют до уровня промерзания. Незаглубленные опоры и вовсе возводят на уровне грунта. В строительной практике получила популярность т.н. «плавающая плита» – такой фундамент заглубляется максимум до 1 м, а силами нижележащего утрамбованного песчано-гравийного слоя обеспечивается видимость «плавающей» железобетонной плиты. Такая конструкция характеризуется большей устойчивостью к деформационным воздействиям со стороны грунта.

Наибольшей же популярностью пользуется мелкозаглубленная разновидность плитного фундамента, закладываемая на глубину 200-500 мм. Под плитой обустраивается уплотненная «подушка» из песка и щебенки суммарной толщиной порядка 30 см. Плита армируется по всей площади. Подобная конструкция характеризуется высокой стойкостью к переменным нагрузкам, возникающим при перепадах температуры и приводящим к пучению грунта.

Мелкозаглубленная
разновидность плитного фундамента

Таким образом, плитные фундаменты подходят для использования на проблемных грунтах: подвижных, просадочных, пучинистых и т.п.

Среди недостатков такой конструкции нужно отметить большой объем земляных работ, а также повышенные затраты на приобретение высококачественных армирующих элементов и бетона. Используемые материалы должны соответствовать следующим минимальным требованиям:

  • марка бетона – от М200;
  • арматура – стальная, диаметром не менее 1,2 см.

Таким образом, монолитная армированная бетонная плита хорошо подходит для использования на грунтах с высокими подземными водами, а также на слабых и разнородных почвах. При таких обстоятельствах расходы на обустройство плитной конструкции будут оправданными и целесообразными. В противном случае специалисты рекомендуют обращать внимание на более экономически выгодные решения в виде вышерассмотренных столбчатого и ленточного оснований.

Дополнительно вам предлагается ознакомиться с таблицами, характеризующими различные типы грунтов, а также отражающими зависимость показателя глубины заложения опорной конструкции от характеристик грунта и высоты прохождения подземных вод.




Удачной работы!

Видео – Глубина заложения фундамента

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ИМ. Н. М. ГЕРСЕВАНОВА
(НИИОСП ИМ. Н. М. ГЕРСЕВАНОВА) ГОССТРОЯ СССР

РУКОВОДСТВО
ПО ПРОЕКТИРОВАНИЮ ОСНОВАНИЙ И ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

МОСКВА СТРОЙИЗДАТ 1979

Предназначено для инженерно-технических работников проектных и строительных организаций.

ПРЕДИСЛОВИЕ

Действие сил морозного пучения грунтов и выпучивания фундаментов ухудшает условия эксплуатации и укорачивает сроки службы зданий и сооружений, вызывает их повреждения и деформации конструктивных элементов, что приводит к большим ежегодным затратам на ремонт повреждений и наносит народному хозяйству значительный ущерб.

В настоящем Руководстве приведены проверенные в практике строительства инженерно-мелиоративные, строительно-конструктивные, тепловые и термохимические мероприятия по борьбе с вредным влиянием морозного пучения грунтов на фундаменты зданий и сооружений, а также в кратком изложении даны указания по производству строительных работ по нулевому циклу и мероприятиям по предотвращению выпучивания незаглубляемых и малозаглубляемых фундаментов под малоэтажные каменные здания различного назначения и одноэтажные сборные деревянные дома в сельской местности.

Наиболее часто встречающиеся повреждения фундаментов и разрушения конструкций надфундаментного строения зданий и сооружений от морозного пучения обусловлены следующими факторами: а) составом грунтов в зоне сезонного промерзания и оттаивания; б) состоянием природной влажности грунтов и условиями их увлажнения; в) глубиной и скоростью сезонного промерзания грунтов; г) конструктивными особенностями фундаментов и надфундаментного строения; д) степенью теплового влияния отапливаемых зданий на глубину сезонного промерзания грунтов; е) эффективностью мероприятий, применяемых против воздействия сил морозного выпучивания фундаментов; ж) способами и условиями производства строительных работ по нулевому циклу; з) условиями эксплуатационного содержания зданий и сооружений. Чаще всего эти факторы воздействуют на фундаменты суммарно при различном их сочетании, и бывает трудно установить действительную причину повреждений в зданиях.

Как правило, результаты исследований взаимодействия промерзающего грунта с фундаментами, полученные по методу моделирования в лабораторных условиях, до сих пор не приносят позитивного эффекта при перенесении этих результатов в строительную практику, поэтому следует быть осмотрительнее с применением в природных условиях зависимостей, установленных в лаборатории.

При проектировании следует принимать в расчет результаты многолетних стационарных экспериментальных данных по исследованию взаимодействия промерзающего грунта с фундаментами в природных условиях, а не за одну зиму, так как климатические условия по отдельным годам с аномальными отклонениями не являются характерными для средней зимы данной местности.

Инженерно-мелиоративные мероприятия в принципе являются коренными, поскольку они обеспечивают осушение грунтов в зоне нормативной глубины промерзания грунтов и снижение степени увлажнения слоя грунта на глубине 2-3 м ниже глубины сезонного промерзания. Это мероприятие возможно осуществить практически не для всех грунтовых и гидрогеологических условий, и тогда следует применять его только как уменьшающее деформацию грунта при промерзании в сочетании с другими мероприятиями.

Строительно-конструктивные мероприятия против сил морозного выпучивания фундаментов направлены в основном на приспособление конструкций фундаментов и частично надфундаментного строения к действующим силам морозного пучения грунтов и к их деформациям при промерзании и оттаивании (например, выбор типа конструкций фундаментов, глубина их заложения в грунт, жесткости конструкций надфундаментного строения, величин нагрузки на фундаменты, заанкеривание фундаментов в грунтах, залегающих ниже глубины промерзания и многие другие конструктивные приспособления).

Рекомендуемые в Руководстве конструктивные мероприятия приведены только в самых общих формулировках без надлежащей конкретизации, как, например, толщина слоя песчано-гравийной или щебеночной подушки под фундаментами при замене пучинистого грунта непучинистым, толщина слоя теплоизолирующих покрытий во время строительства и на период эксплуатации и др.; более детально даны рекомендации по размерам засыпки пазух непучинистым грунтом и по размерам теплоизоляционных подушек в зависимости от глубины промерзания грунтов и местного опыта строительства.

Расчеты фундаментов на устойчивость под действием сил морозного выпучивания, а также расчеты по конструктивным мероприятиям не являются обязательными для всех конструкций, применяемых в фундаментостроении, поэтому нельзя считать эти мероприятия универсальными по борьбе с вредным влиянием морозного пучения грунтов во всех случаях.

Тепловые и химические мероприятия являются коренными как по полному исключению деформаций от морозного пучения, так и по снижению сил морозного выпучивания и величин деформации фундаментов при промерзании грунтов. Они включают в себя применение рекомендуемых теплоизоляционных покрытий на поверхности грунта вокруг фундаментов, теплоносителей для обогрева грунтов и химических реагентов, понижающих температуру смерзания грунта с фундаментом и снижающих касательные силы сцепления мерзлого грунта с плоскостями фундаментов.

При обогреве грунт не будет иметь отрицательную температуру, что исключает его промерзание и морозное пучение.

При обработке грунта химическими реагентами, хотя грунт потом имеет отрицательную температуру, он не замерзает, поэтому также исключается промерзание и морозное пучение.

При назначении противопучинных мероприятий необходимо учитывать значимость зданий и сооружений, особенности технологических процессов производства и условия эксплуатационного режима, грунтовые и гидрогеологические условия, а также климатические характеристики данного района. При проектировании фундаментов на пучинистых грунтах следует отдавать предпочтение таким мероприятиям, которые наиболее экономичны и эффективны в данных условиях.

Изложенные в данном Руководстве мероприятия по борьбе с деформациями зданий и сооружений под действием сил морозного пучения грунтов помогут строителям повысить качество строящихся объектов, обеспечить устойчивость и долговечную эксплуатационную пригодность зданий и сооружений, исключить случаи удлинения сроков строительства, обеспечить ввод зданий и сооружений в промышленную эксплуатацию в плановые сроки, снизить непроизводительные разовые и ежегодно повторяющиеся расходы на ремонт и восстановление поврежденных силами морозного пучения зданий и сооружений.

Руководство составлено доктором техн. наук М. Ф. Киселевым.

Все замечания по тексту Руководства и предложения об улучшении просьба присылать в НИИ оснований и подземных сооружений Госстроя СССР по адресу: 109389, Москва, 2-я Институтская ул., д. 6.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Данное Руководство предназначено для проектирования и строительства фундаментов зданий, промышленных сооружений и различного специального и. технологического оборудования на пучинистых грунтах.

1.2. Руководство разработано в соответствии с основными положениями глав СНиП по проектированию оснований и фундаментов зданий и сооружений и оснований и фундаментов зданий и сооружений на вечномерзлых грунтах.

1.3. Пучинистыми (морозоопасными) грунтами называются такие грунты, которые при промерзании обладают свойством увеличивать свой объем при переходе в мерзлое состояние. Изменение объема грунта обнаруживается в природных условиях в поднятии в процессе промерзания и опускании при оттаивании дневной поверхности грунта. В результате этих объемных изменений происходят, деформации и наносят повреждения основаниям, фундаментам и надфундаментному строению зданий и сооружений.

1.4. В зависимости от гранулометрического состава грунта, его природной влажности, глубины промерзания и уровня стояния грунтовых вод грунты, склонные к деформациям при промерзании, по степени морозной пучинистости подразделяются на: сильнопучинистые, среднепучинистые, слабопучинистые и практически непучинистые.

1.5. Подразделения грунтов по степени морозной пучинистости в зависимости от изменяющегося во времени уровня грунтовых вод и показателя консистенции I L приняты по табл. 1 прил. 6 главы СНиП по проектированию оснований и фундаментов зданий и сооружений. Природную влажность грунтов на период эксплуатации при проектировании необходимо корректировать по пп. 3.17-3.20 упомянутой выше главы СНиП.

1.6. Основанием для установления степени пучинистости грунтов должны служить материалы гидрогеологических и грунтовых изысканий (состав грунта, его природная влажность и уровень стояния грунтовых вод, которые могут охарактеризовать участок застройки на глубину не менее удвоенной нормативной глубины промерзания грунта, считая от планировочной отметки).

В практике проектирования оснований и фундаментов часто встречаются большие затруднения при оценке грунтов по степени их морозной пучинистости на основании имеющихся материалов инженерно-геологических изысканий, так как обычно слой сезонного промерзания не считается основанием для фундаментов и для него не определяются необходимые характеристики грунта. Если же первые 1,5-2 м в инженерно-геологических материалах охарактеризованы только как «растительный слой» или же как «почва серая», то при отсутствии уровня грунтовых вод близко к слою промерзания не представляется возможности установить степень пучинистости грунтов. При отсутствии характеристик промерзающего слоя грунта надо провести отдельно дополнительные изыскания на стройплощадке, желательно под каждое стоящее здание.

1.7. Проектирование оснований и фундаментов зданий и сооружений на пучинистых грунтах должно осуществляться с учетом:

Таблица 1

Наименование грунта по степени морозной пучинистости

Пределы положения z , м, уровня грунтовых вод ниже расчетной глубины промерзания у фундамента

Консистенция глинистого грунта

I L

песок мелкий

песок пылеватый

супесь

суглинок

глина

Сильнопучинистые

z ≤0,5

z ≤1

z ≤1,5

I L >0,5

Среднепучинистые

z ≤0,5

0,5< z ≤1

1< z ≤1,5

1,5< z ≤2

0,25< I L ≤0,5

Слабопучинистые

z ≤0,5

0,5< z ≤1

1< z ≤1,5

1,5< z ≤2,5

2< z ≤3

0< I L ≤0,25

Практически непучинистые

z >0,5

z >1

z >1,5

z >2,5

z >3

I L ≤0

Примечания : 1. Консистенция глинистых грунтов I L должна приниматься по их природной влажности, соответствующей периоду начала промерзания (до миграции влаги в результате действия отрицательных температур). При наличии в пределах расчетной глубины промерзания глинистых грунтов различной консистенции степень морозной пучинистости этих грунтов в целом принимается по среднему взвешенному значению их консистенции.

2. Крупнообломочные грунты с глинистым заполнителем, содержащие в своем составе более 30% по весу частиц размером менее 0,1 мм, при положении уровня грунтовых вод ниже расчетной глубины промерзания от 1 до 2 м относятся к среднепучинистым грунтам, а менее одного метра - к сильнопучинистым.

3. Величина z - разность между глубиной залегания уровня грунтовых вод и расчетной глубиной промерзания грунта, определяемая по формуле: z =Н 0 – H , где Н 0 -расстояние от планировочной отметки до залегания уровня грунтовых вод; Н - расчетная глубина промерзания, м, по главе СНиП II -15-74.

а) степени морозной пучинистости грунтов;

б) рельефа местности, времени и количества выпадающих атмосферных осадков, гидрогеологического режима, условий увлажнения грунтов и глубины сезонного промерзания;

в) экспозиции строительной площадки по отношению к освещаемости солнцем;

г) назначения, сроков строительства и службы, значимости зданий и сооружений, технологических и эксплуатационных условий;

д) технической и экономической целесообразности назначаемых конструкций фундаментов, трудоемкости и продолжительности работ по нулевому циклу и экономии строительных материалов;

е) возможности изменения гидрогеологического режима грунтов, условий их увлажнения в период строительства и за весь срок эксплуатации здания или сооружения;

ж) имеющихся результатов специальных исследований по определению сил и деформаций морозного пучения грунтов (если таковые имеются).

1.8. Объем и виды специальных исследований свойств грунтов и общих инженерно-геологических и гидрогеологических изысканий предусматриваются общей программой изысканий или дополнительными зданиями к общей программе по согласованию с заказчиком в зависимости от геологических условий, стадии проектирования и специфики проектируемых зданий и сооружений.

2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ

2.1. При выборе грунтов в качестве естественных оснований в пределах отведенной территории под застройку следует отдавать предпочтение непучинистым или практически непучинистым грунтам (скальные, полускальные, щебенистые, галечниковые, гравийные, дресвяные, пески гравелистые, пески крупные и средней крупности, а также пески мелкие и пылеватые, супеси, суглинки и глины твердой консистенции при уровне стояния грунтовых вод ниже планировочной отметки на 4-5 м).

2.2. Под каменные здания и сооружения на сильно- и среднепучинистых грунтах целесообразнее проектировать столбчатые или свайные фундаменты, заанкеренные в грунте по расчету на силы выпучивания и на разрыв в наиболее опасном сечении, или же предусматривать замену пучинистых грунтов непучинистыми на часть или на всю глубину сезонного промерзания грунта. Возможно также применение подсыпок (подушек) из гравия, песка, горелых пород с терриконов и других дренирующих материалов под всем зданием или сооружением слоем на расчетную глубину промерзания грунта без удаления пучинистых грунтов или только под фундаментами при надлежащем технико-экономическом обосновании расчетом.

2.3. Все основные мероприятия, направленные против деформаций конструктивных элементов зданий и сооружений при промерзании и пучении грунтов, следует предусматривать при проектировании оснований и фундаментов с включением всех затрат в сметную стоимость работ по нулевому циклу.

В тех случаях, когда мероприятия против морозного пучения проектом не предусмотрены, а гидрогеологические условия грунтов строительной площадки в период выполнения работ по нулевому циклу оказались не соответствующими результатам изысканий или же ухудшились по причине неблагоприятных погодных условий, представители авторского надзора должны составить соответствующий акт и возбудить вопрос перед проектной организацией о назначении дополнительно к проекту мероприятий против морозного пучения грунтов (как, например, осушение грунтов в основании, уплотнение с втрамбовкой щебня и др.).

2.4. Расчет оснований на действие сил морозного выпучивания следует производить по устойчивости, так как деформации морозного пучения знакопеременные, повторяющиеся ежегодно. На пучинистых грунтах проектом следует предусматривать обратную засыпку пазух котлованов до наступления промерзания грунтов во избежание морозного выпучивания фундаментов.

2.5. Прочность, устойчивость и долголетняя эксплуатационная пригодность зданий и сооружений на пучинистых грунтах достигаются применением в практике проектирования и строительства инженерно-мелиоративных, строительно-конструктивных и термохимических мероприятий.

2.6. Выбор противопучинных мероприятий должен базироваться на достоверных и весьма детальных данных о наличии подземных вод, их дебите, направлении и скорости движения их в грунте, рельефе кровли водоупорного слоя, возможностях изменения конструкций фундаментов, способах производства строительных работ, условиях эксплуатации и особенностях технологических процессов производства.

3. ИНЖЕНЕРНО-МЕЛИОРАТИВНЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ДЕФОРМАЦИИ ОТ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТОВ

3.1. Основная причина морозного пучения грунтов - наличие в них воды, способной переходить в лед при промерзании, поэтому мероприятия, направленные на осушение грунтов, являются коренными, как наиболее эффективные. Все инженерно-мелиоративные мероприятия сводятся к осушению грунтов или недопущению их водонасыщения в зоне сезонного промерзания и ниже этой зоны на 2-3 м. Важно, чтобы грунты оснований перед промерзанием были максимально обезвожены, чего не всегда можно достичь, так как не все грунты способны быстро отдавать содержащуюся в них воду.

3.2. Выбор и назначение мелиоративных мероприятий должны находиться в зависимости от условий источника увлажнения (атмосферных осадков, верховодки или подземных вод), рельефа местности и геологических напластований с их фильтрационной способностью.

3.3. При составлении проектов строительства и их осуществлении в натуре на площадках, сложенных пучинистыми грунтами, следует по возможности избегать изменения направления естественных водостоков и учитывать наличие растительного покрова и требования к его сохранению.

3.4. При проектировании фундаментов на естественном основании с пучинистыми грунтами надлежит предусматривать надежный водоотвод подземных, атмосферных и производственных вод с площадки путем выполнения своевременно вертикальной планировки застраиваемой территории, устройства ливневой канализационной сети, водоотводных каналов и лотков, дренажа и других гидромелиоративных сооружений сразу же после окончания работ по нулевому циклу, не дожидаясь полного окончания строительных работ.

3.5. В общие меры по осушению участка входят мероприятия по осушению котлованов. До отрывки котлована в первую очередь необходимо защитить его от стока атмосферных вод с окружающей территории, от проникновения воды из соседних водоемов, канав и т.д. путем устройства берм или канав.

3.6. Нельзя допускать застаивание воды в котлованах. При небольшом притоке грунтовой воды следует организовать систематическое удаление ее через устройство колодцев глубиной на 1 м ниже дна котлована.

Для понижения уровня грунтовых вод рекомендуется устройство по периметру котлована вертикальных дрен из песчано-гравийной смеси.

3.7. Обратную засыпку пазух при глинистых грунтах надлежит выполнять с тщательным послойным ее уплотнением ручными и пневмо или электротрамбовками во избежание скопления в засыпке воды, которая повышает влажность грунта не только засыпки, но и грунта природного сложения.

3.8. Насыпные глинистые грунты при планировке местности в пределах застройки должны быть послойно уплотнены механизмами до объемной массы скелета грунта не менее 1,6 т/м 3 и пористости не более 40% (для глинистого грунта без дренирующих прослоек). Поверхность насыпного грунта так же, как и поверхность на срезке, в местах, где отсутствует складирование стройматериалов и движение автотранспорта, полезно покрыть почвенным слоем в 10-15 см и задернить.

Уклон при твердых покрытиях (отмостки, площадки, подъезды и др.) должен быть не менее 3%, а для задернованной поверхности - не менее 5%.

3.9. Для снижения неравномерного увлажнения пучинистых грунтов вокруг фундаментов при проектировании и строительстве рекомендуется: земляные работы производить с минимальным объемом нарушения грунтов природного сложения при рытье котлованов под фундаменты и траншей подземных инженерных коммуникаций; обязательно устраивать водонепроницаемые отмостки шириной не менее 1 м вокруг здания с глиняными гидроизолирующими слоями в основании.

3.10. На строительных площадках, сложенных глинистыми грунтами и имеющих уклон местности более 2%, при проектировании следует избегать устройства резервуаров для воды, прудов и других источников увлажнения, а также расположения вводов в здание трубопроводов канализации и водоснабжения с нагорной стороны здания или сооружения.

3.11. Строительные площадки, расположенные на склонах, должны быть ограждены до начала рытья котлованов от поверхностных вод, стекающих со склонов, постоянной нагорной канавкой с уклоном не менее 5%.

3.12. Нельзя допускать при строительстве скопления воды от повреждения временного водопровода. При обнаружении на поверхности грунта стоячей воды или при увлажнении грунта от повреждения трубопровода необходимо принять срочные меры по ликвидации причин скопления воды или увлажнения грунта вблизи расположения фундаментов.

3.13. При засыпке коммуникационных траншей с нагорной стороны здания или сооружения необходимо устраивать перемычки из мятой глины или суглинка с тщательным уплотнением для предотвращения попадания (по траншеям) воды к зданиям и сооружениям и увлажнения грунтов вблизи фундаментов.

3.14. Устройство прудов и водоемов, которые могут изменить гидрогеологические условия стройплощадки и повысить водонасыщение пучинистых грунтов застраиваемой территории, не допускается. Необходимо учитывать проектируемое изменение уровня воды в реках, озерах и прудах в соответствии с перспективным генеральным планом.

3.15. Следует избегать расположения зданий и сооружений ближе 20 м к действующим колонкам для заправки тепловозов, обмывки автомашин, снабжения населения и для других целей, а также не проектировать колонки на пучинистых грунтах ближе 20 м к существующим зданиям и сооружениям. Площадки вокруг колонок должны быть спланированы с обеспечением отвода воды.

3.16. При проектировании оснований должны учитываться как сезонные и многолетние колебания уровня грунтовых вод (и верховодки), так и возможность формирования нового повышения, или понижения среднего уровня (п. 3.17 главы по проектированию оснований зданий и сооружений). Повышение уровня грунтовых вод увеличивает степень пучинистости грунтов, а поэтому необходимо при проектировании прогнозировать изменение уровня грунтовых вод в соответствии с указаниями пп. 3.17-3.20 главы СНиП по проектированию оснований зданий и сооружений.

3.17. Следует особо обращать внимание на сезон периодического подтопления территории, так как наиболее неблагоприятно сказывается на морозное пучение подтопление территории в осенний период, когда увеличивается водонасыщение грунтов перед промерзанием. Необходимо также прогнозировать искусственное повышение уровня грунтовых вод и природной влажности грунта за счет поступления промышленной воды при технологических процессах, связанных с большим потреблением воды.

3.18. Проектирование инженерно-мелиоративных мероприятий должно базироваться на достоверных и детальных данных о наличии подземных вод, их дебите, направлении и скорости движения их в грунте, рельефе кровли водоупорного слоя. Без этих данных построенные дренажно-осушительные сооружения могут оказаться бесполезными. Если нет возможности избавиться от грунтовых вод и осушить грунты промерзающего слоя, то следует прибегнуть к проектированию конструктивных или термохимических мероприятий.

4. СТРОИТЕЛЬНО-КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕФОРМАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ПРОМЕРЗАНИИ И ПУЧЕНИИ ГРУНТОВ

4.1. Строительно-конструктивные мероприятия против деформации зданий и сооружений от морозного пучения грунтов предусматриваются в двух направлениях: полного уравновешивания нормальных и касательных сил морозного пучения и снижения сил и деформаций пучения и приспособления конструкций зданий и сооружений к деформациям грунтов оснований при их промерзании и оттаивании.

При полном уравновешивании нормальных и касательных сил морозного пучения грунтов мероприятия против деформации сводятся к конструктивным решениям и расчету нагрузок на фундаменты. Только на период строительства, когда фундаменты перезимовывают ненагруженными или имеют еще не полную проектную нагрузку надлежит предусматривать временные теплохимические мероприятия по предохранению грунтов от увлажнения и промерзания. Для малоэтажных зданий с малонагруженными фундаментами целесообразно применять такие конструктивные мероприятия, которые направлены на снижение сил морозного пучения и деформаций конструктивных элементов зданий и приспособление, зданий и сооружений к деформациям при промерзании и оттаивании грунтов.

4.2. Фундаменты зданий и сооружений, возводимых на пучинистых грунтах, могут быть запроектированы из любых строительных материалов, которые обеспечивают их эксплуатационную пригодность и удовлетворяют требованиям прочности и долголетней сохранности. При этом необходимо считаться с возможными вертикальными знакопеременными напряжениями от морозного пучения грунтов (поднятие грунтов при промерзании и осадка их при оттаивании).

4.3. При размещении зданий и сооружений на строительной площадке необходимо по возможности учитывать степень пучинистости грунтов с тем расчетом, чтобы под фундаментами одного здания не могли оказаться грунты с различной степенью пучинистости. При необходимости строительства здания на грунтах с различной степенью пучинистости следует предусматривать конструктивные мероприятия против действия сил морозного пучения, например при ленточных сборных железобетонных фундаментах устраивать по фундаментным подушкам монолитный железобетонный пояс и др.

4.4. При проектировании зданий и сооружений с ленточными фундаментами на сильнопучинистых грунтах в уровне верха фундаментов надлежит предусматривать для 1-2-этажных каменных зданий по периметру наружных и внутренних капитальных стен конструктивные железобетонные пояса шириной не менее 0,8 толщины стены, высотой 0,15 м и над проемами последнего этажа - армированные пояса.

Примечание . Железобетонные пояса должны иметь марку бетона не менее М-150, арматуру с минимальным сечением, три стержня диаметром 10 мм с усиленным стыкованием по длине.

4.5. При проектировании свайных фундаментов с ростверком на сильно- и среднепучинистых грунтах необходимо учитывать действие нормальных сил морозного пучения грунтов на подошву ростверка. Сборные железобетонные подстеновые рандбалки должны быть монолитно связаны между собой и уложены с зазором не менее 15 см между рандбалкой и грунтом.

4.6. Глубину заложения фундаментов в практике строительства следует рассматривать как одно из коренных мероприятий по борьбе с деформациями от неравномерных осадок фундаментов и от морозного выпучивания при промерзании грунтов, т. к. заглублением фундаментов в грунт преследуется цель обеспечения устойчивости и долговечной эксплуатационной пригодности зданий и сооружений.

При проектировании глубина заложения фундаментов назначается в зависимости от факторов, предусмотренных в п. 3.27 главы СНиП

При проектировании фундаментов для зданий и сооружений назначение заглубления фундаментов в грунт - довольно сложный и важный вопрос фундаментостроения, поэтому при его решении следует исходить из всестороннего анализа комплексного влияния различных факторов на устойчивость фундаментов и на состояние грунтов в их основании.

Под глубиной заложения фундаментов подразумевается расстояние, измеряемое по вертикали, считая от дневной поверхности грунта с учетом подсыпки или срезки до подошвы фундамента, а при наличии специальной подготовки из песка, щебня или тощего бетона - до низа слоя подготовки. Подошвой фундамента называется нижняя плоскость конструкции фундамента, опирающаяся на грунт и передающая на грунт давление от веса здания и сооружения.

4.7. При определении глубины заложения фундаментов следует учитывать назначение и конструктивные особенности зданий и сооружений. Для уникальных зданий (например, высотные здания и Останкинская телевизионная башня в Москве) критерием для заглубления фундаментов служат свойства грунтов. Известно, что на большей глубине грунты бывают плотнее и могут воспринимать значительно большие нагрузки.

Сборные типовые фундаменты гражданских зданий массового строительства (например, жилых многоэтажных домов) заглубляют по условиям устойчивости. Типового решения глубины заложения фундаментов для всех разновидностей грунтов в основании дать не представляется возможности, они возможны только для аналогичных грунтовых условий.

Малоэтажные здания с малонагруженными фундаментами, как, например, гражданские и промышленные здания и сооружения в сельской местности, проектируются с учетом предельных деформаций на непучинистых грунтах и устойчивости на пучинистых.

Глубина заложения фундаментов под временные здания и сооружения принимается по технико-экономическим соображениям с применением облегченных фундаментов мелкого заложения.

Глубина заложения фундаментов крупных промышленных зданий принимается в зависимости от технологических процессов, фундаментов под специальное оборудование и машины, а также по условиям эксплуатационного содержания здания.

Глубина заложения фундаментов зависит от сочетания постоянных и временных нагрузок на основание, а также от динамических воздействий на грунты в основании фундаментов, особенно эти условия необходимо учитывать при заглублении фундаментов под стены наружного ограждения в промышленных зданиях с большими динамическими нагрузками.

4.8. Фундаменты под тяжелое оборудование и машины, а также под мачты, колонны и другие спецсооружения устанавливаются на глубину в соответствии с требованием обеспечения устойчивости и экономической целесообразности. Как правило, плотность сложения грунтов с глубиной возрастает, и поэтому в целях повышения давления на основание и снижения величины осадок фундаментов при уплотнении грунтов принимают большую глубину заложения фундаментов по сравнению с глубиной заложения фундаментов по условиям промерзания и пучения грунтов.

Фундаменты, работающие на горизонтальные или вырывающие нагрузки, закладываются на глубину в зависимости от величины этих нагрузок. Для зданий с отапливаемыми подвалами глубина заложения фундаментов принимается по условиям устойчивости фундамента независимо от глубины промерзания грунта.

4.9. Встречаются случаи, когда на застраиваемой территории изменяется природный рельеф площадки путем отвода русел ручьев и речек за пределы площадки строительства, а старое русло засыпается грунтом или же площадка выравнивается срезкой грунта на одном участке и подсыпкой на другом.

Несмотря на уплотнение насыпных грунтов, осадка фундаментов на них будет больше по сравнению с осадкой грунта природного сложения, а поэтому и глубину заложения фундаментов нельзя принимать одинаковую для насыпных грунтов и грунтов природного сложения:

При назначении глубины заложения фундаментов необходимо учитывать гидрогеологические условия как решающий фактор во многих случаях проектирования фундаментов. Глубина заложения фундамента зависит от физического состояния современных геологических отложений, однородности и плотности грунта, уровня грунтовых вод и консистенции глинистых грунтов. Грунты рыхлого сложения, водонасыщенные и содержащие в своем составе большое количество органических остатков, не всегда можно использовать в качестве естественных оснований.

На грунтах слабых и сильносжимаемых требуется применять мероприятия по улучшению свойств грунтов или же проектировать свайные фундаменты.

Глубину заложения фундаментов в сложных гидрогеологических условиях следует решать в нескольких вариантах, и наиболее рациональное решение принимается из их сравнения на основании технико-экономических расчетов.

Крайне неблагоприятным фактором в фундаментостроении считается наличие грунтовых вод и расположение их уровня близко к дневной поверхности. Этот фактор обусловливает не только глубину заложения фундаментов, но и их конструкцию и способ производства работ по возведению фундаментов.

4.10. Периодическое колебание уровня грунтовых вод в напряженной зоне основания фундаментов сильно влияет на несущую способность грунтов и вызывает деформации оснований и фундаментов. Кроме того, близкое расположение уровня грунтовых вод к слою мерзлого грунта обусловливает величину морозного вспучивания грунта за счет подсоса влаги из нижележащих водонасыщенных грунтов.

Особым видом грунтовых вод является так называемая верховодка с ограниченным распространением в плане и невыдержанным уровнем стояния грунтовой воды, вмещаемой в толще грунта в виде отдельных очагов. Довольно часто верховодка встречается в толще сезоннопромерзающего грунта и обусловливает большую неравномерность морозного пучения грунтов и выпучивание фундаментов. Даже в пределах одной строительной площадки встречается несколько очагов верховодки с различным уровнем стояния грунтовой воды, иногда даже напорной.

Необходимо учитывать при назначении глубины заложения фундаментов глубину промерзания и степень пучинистости грунтов, тан как по условию устойчивости нельзя допускать промерзания пучинистых грунтов ниже подошвы фундаментов.

4.11. Глубина заложения фундаментов каменных гражданских зданий и промышленных сооружений на пучинистых грунтах принимается не менее расчетной глубины промерзания грунтов согласно табл. 15 главы СНиП по проектированию оснований зданий и сооружений.

Расчетная глубина промерзания грунтов определяется по формуле

Σ| T м | - сумма абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по табл. 1 главы СНиП по строительной климатологии и геофизике, а при отсутствии в ней данных для конкретного пункта или района строительства по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях со строительной площадкой;

Н 0 - глубина промерзания грунта при Σ| T м |=1, зависящая от вида грунта и принимаемая равной, см, для: суглинков и глин - 23; супесей, песков мелких и пылеватых - 28, песков гравелистых, крупных и средней крупности - 30;

m t - коэффициент, учитывающий влияние теплового режима здания (сооружения) на глубину промерзания грунта у фундаментов стен и колонн, принимаемый по табл. 14 главы СНиП по проектированию оснований зданий и сооружений.

Различают три отличающиеся друг от друга глубины промерзания грунтов: фактическую, нормативную и расчетную.

В практике фундаментостроения под фактической глубиной промерзания грунтов принято считать слой твердосмерзшейся почвы по вертикали от поверхности до подошвы твердомерзлого слоя грунта. Гидрометслужба за фактическую глубину промерзания грунтов принимает глубину проникания температуры нуль градусов в грунт, так как для сельскохозяйственных целей требуется знать глубину промерзания грунта до нулевой температуры, а для целей фундаментостроения требуется знать, на какую глубину грунт находится в твердомерзлом состоянии. Поскольку фактическая глубина промерзания грунтов зависит от климатических факторов (даже в одном и том же пункте в разные годы глубина промерзания грунтов имеет колебание), то за нормативную глубину промерзания грунтов по п. 3.30 главы СНиП по проектированию оснований зданий и сооружений принято среднее значение.

Следует подразделять промерзание грунта под подошвой фундамента на разовое при производстве работ по нулевому циклу в зимнее время и на ежегодное в процессе всего срока эксплуатации здания, когда появляются знакопеременные деформации при сезонном промерзании и оттаивании грунтов в период эксплуатации. При назначении глубины заложения фундаментов по условию исключения возможности промерзания пучинистого грунта под подошвой фундамента имеется в виду ежегодное промерзание в процессе эксплуатации зданий и сооружений, так как по условию промерзания грунта в период строительства глубина заложения фундамента не определяется.

Как уже упоминалось выше, мероприятие по глубине заложения фундаментов против недопущения промерзания грунта под подошвой фундамента относится лишь к эксплуатационному периоду, а на период строительства предусматриваются защитные мероприятия по предохранению грунта от промерзания, поскольку в период строительства подошва фундаментов может оказаться в зоне промерзания вследствие незавершения строительных работ по нулевому циклу.

В тех случаях когда природная влажность грунтов не повышается в периоды строительства и эксплуатации зданий на слабопучинистых грунтах (полутвердой и тугопластичной консистенции), глубина заложения фундаментов по условию возможности выпучивания должна приниматься при нормативной глубине промерзания:

до 1 м - не менее 0,5 м от планировочной отметки

до 1,5 м - не менее 0,75 м от планировочной отметки

от 1,5до 2,5 м - не менее 1,0 м от планировочной отметки

от 2,5до 3,5 м - не менее 1,5 м от планировочной отметки

Для практически непучинистых грунтов (твердой консистенции) расчетная глубина может приниматься равной нормативной глубине промерзания с коэффициентом 0,5.

4.12. На основании экспериментальной проверки незаглубляемых и мелкозаглубляемых фундаментов на строительных объектах за последние годы в практике энергетического и сельскохозяйственного строительства применяют железобетонные фундаменты в виде плит, лежней и блоков, укладываемых без заглубления на пучинистых грунтах под временные здания и сооружения строительных баз теплоэлектростанций и под оборудование открытых распределительных устройств электроподстанций. При этом полностью исключаются касательные силы морозного выпучивания и накопление остаточных необратимых деформаций морозного выпучивания. Этот способ значительно удешевляет строительство и в то же время обеспечивает эксплуатационную пригодность зданий и спецоборудования.

4.13. Глубина заложения фундаментов под внутренние несущие стены и колонны неотапливаемых промышленных зданий на сильно- и среднепучинистых грунтах принимается не менее расчетной глубины промерзания грунтов.

Глубина заложения фундаментов стен и колонн отапливаемых зданий, имеющих неотапливаемые подвалы или подполья на сильнопучинистых и среднепучинистых грунтах, принимается равной нормативной глубине промерзания с коэффициентом 0,5, считая от поверхности пола подвала.

При срезках грунта с наружной стороны стен здания нормативная глубина промерзания грунта считается от поверхности грунта после срезки, т.е. от планировочной отметки. При подсыпках грунта вокруг стен с наружной стороны нельзя допускать возведения здания до отсыпки грунта вокруг фундаментов на проектную отметку.

При срезках и отсыпках грунта следует особо обратить внимание на осушение грунтов снаружи здания, так как водонасыщенные грунты при промерзании могут нанести повреждения зданию вследствие бокового давления на стены подвала.

4.14. Как правило, не допускается промораживание грунта ниже подошвы фундамента каменных зданий и сооружений и фундаменте под специальное технологическое оборудование и машины на сильнопучинистых и среднепучинистых грунтах как во время строительства, так и в период эксплуатации.

На практически непучинистых грунтах может быть допущено промерзание грунтов ниже подошвы фундаментов только при условии, если грунты природного сложения плотные и к моменту промерзания или во время промерзания природная влажность их не превышает влажность на границе раскатывания.

4.15. Как правило, запрещается укладка фундаментов на мерзлый грунт в основании без проведения специальных исследований физического состояния мерзлого грунта и заключения от научно-исследовательской организации.

Не редки случаи в практике фундаментостроения, когда требуется укладывать фундаменты на промороженные грунты. При благоприятных грунтовых условиях можно допустить укладку фундаментов на мерзлые грунты без предварительного их отогрева, но при этом необходимо иметь достоверные физические характеристики грунтов в мерзлом состоянии и данные об их природной влажности, чтобы убедиться в том, что действительно грунты очень плотные и маловлажные при твердой консистенции и по степени морозной пучинистости относятся к практически непучинистым. Показателем плотности мерзлого глинистого грунта служит объемная масса скелета мерзлого грунта более 1,6 г/см 3 .

4.16. В целях уменьшения сил пучения и предупреждения деформаций фундаментов, вследствие смерзания пучащихся грунтов с боковой поверхностью фундаментов следует:

а) принимать простейшие формы фундаментов с малой площадью поперечного сечения;

б) отдавать предпочтение столбчатым и свайным фундаментам с фундаментными балками;

в) уменьшать площадь смерзания грунта с поверхностью фундаментов;

г) заанкеривать фундаменты в слое грунта ниже сезонного промерзания;

д) снижать глубину промерзания грунта возле фундаментов теплоизоляционными мероприятиями;

е) уменьшать значения касательных сил морозного пучения путем применения смазки плоскостей фундаментов полимерной пленкой и другими смазочными материалами;

ж) принимать решения по повышению нагрузок на фундамент для уравновешивания касательных сил выпучивания;

з) применять полную или частичную замену пучинистого грунта непучинистым.

4.17. Расчет устойчивого положения фундаментов на воздействие сил морозного пучения грунтов основания должен производиться в тех случаях, когда грунты соприкасаются с боковой поверхностью фундаментов или расположены под их подошвой, относятся к пучинистым и возможно их промерзание.

Примечания . 1. При проектировании капитальных зданий на фундаментах глубокого заложения с большими нагрузками расчет устойчивости можно производить только на период строительства, если фундаменты перезимовывают ненагруженными;

2. При проектировании и строительстве малоэтажных зданий с конструкциями, малочувствительными к неравномерным осадкам (например, с деревянными рублеными или брусчатыми стенами), а также для сельскохозяйственных сооружений типа овоще- и силосохранилищ, выполняемых из древесных материалов, расчеты на действие сил морозного пучения можно не производить и мероприятия против лучения не применять.

4.18. Устойчивость положения фундаментов при действии на них касательных сил морозного выпучивания проверяется расчетом по формуле

(3)

где N н - нормативная нагрузка на основание в уровне подошвы фундамента, кгс;

Q н - нормативное значение силы, удерживающей фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, расположенный ниже расчетной глубины промерзания (определяемое по );

n 1 - коэффициент перегрузки, принимаемый равным 0,9;

n - коэффициент перегрузки, принимаемый равным 1,1;

τ н - нормативное значение удельной касательной силы пучения, принимаемое равным 1; 0,8 и 0,6 соответственно для сильнопучинистых, среднепучинистых и слабопучинистых грунтов;

F - площадь боковой поверхности части фундамента, находящейся в пределах расчетной глубины промерзания, см (при определении значения F принимается расчетная глубина промерзания, но не более 2 м).

4.19. Нормативное значение силы, удерживающей фундамент от выпучивания, Q н вследствие трения его боковой поверхности о талый грунт определяется по формуле

(4)

где - нормативное значение удельного сопротивления сдвигу талого грунта основания по боковой поверхности фундамента, определяемое по результатам опытных исследований; при их отсутствии значение допускается принимать для песчаных грунтов 0,3 кгс/см 2 и для глинистых 0,2 кгс/см 2 .

4.20. В случае применения фундаментов анкерного типа сила Q н , удерживающая фундамент от выпучивания, должна определяться по формуле

(5)

где γ с p - среднее нормативное значение объемного веса грунта, расположенного выше поверхности анкерной части фундамента, кгс/см 3 ;

F a - площадь верхней поверхности анкерной части фундамента, воспринимающая вес вышележащего грунта, см 2 ;

h a - заглубление анкерной части фундамента от ее верхней поверхности до отметки планировки, см.

4.21. Определение сил морозного пучения грунтов, действующих по боковой поверхности фундаментов, имеет большое значение для проектирования оснований и фундаментов малоэтажных и вообще зданий с малонагруженными фундаментами, особенно для случаев применения монолитных неступенчатых фундаментов.

Пример . Требуется проверить фундамент-плиту из керамзитобетона с размерами 100×150 см под колонну одноэтажного каркасного здания. Глубина промерзания грунта ниже подошвы плиты 60 см, нагрузка на колонну, опирающуюся на плиту, 18 т. Плита уложена на поверхность песчаной подсыпки без заглубления в грунт. Грунт в основании плиты по степени морозной пучинистости относится к среднепучинистому.

Подставляя значения величин в формулу (), получим величину нормальных сил морозного пучения грунтов N н =18 т; n 1 =0,9; n =1,1; F ф =100×150=15000 см 2 ; h 1 =50 см; σ н =0,02 (по ) ; 0,9×18≥1,1×150×50×100×0,02; 16,2<16,5 т.

Экспериментальная проверка показала, что при такой нагрузке фундамент каркасного здания при промерзании грунта на 120 см наблюдались вертикальные смещения фундаментных плит от 3 до 10 мм, что вполне допустимо для каркасных одноэтажных зданий.

Пределы применимости мероприятия по предотвращению выпучивания незаглубляемых и малозаглубляемых фундаментов составлены на основании обобщения имеющегося опыта строительства и эксплуатации зданий и сооружений, возводимых в качестве экспериментальных на пучинистых грунтах.

МЕРОПРИЯТИЯ ПО УСТРОЙСТВУ НЕЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

6.3. При устройстве незаглубляемых фундаментов не проявляются касательные силы морозного выпучивания и, следовательно, исключается возможность возникновения и накопления остаточных неравномерных деформаций при промерзании и оттаивании грунтов. Таким образом, основные мероприятия по обеспечению устойчивости и эксплуатационной пригодности зданий и сооружений сводятся к подготовке грунтов оснований для укладки на них фундаментов с целью снижения деформаций морозного пучения и приспособления конструкций фундаментов и надфундаментного строения, к знакопеременным деформациям.

Нормальные силы морозного пучения в большинстве случаев превышают вес надфундаментного строения, т.е. они не уравновешиваются нагрузкой на фундамент и тогда основным фактором, влияющим на выпучивание фундамента будет величина деформации или пучения грунта. Если же величина морозного пучения не пропорциональна значениям нормальных сил пучения, то в мероприятия следует направить не на преодоление нормальных сил морозного пучения, а на снижение значений деформации пучения до предельно допустимых величин.

В зависимости от наличия вблизи площадки непучинистых грунтов или материалов для устройства подушек под фундаментные плиты можно применять песок крупный и средней крупности, гравийно-галечник, мелкий щебень, котельный шлак, керамзит и различные горнопромышленные отходы.

На площадках с насыпными или намывными грунтами проектирование незаглубленных фундаментов в виде плит и лежней следует выполнить в соответствии с требованиями разд. 10 главы СНиП по проектированию оснований зданий и сооружений.

При устройстве незаглубляемых ленточных фундаментов под сборные одноэтажные здания надлежит руководствоваться следующими рекомендациями:

а) на спланированной площадке после разбивки осей укладывается песчаная, подсыпка под наружные стены толщиной 5-8 см и шириной 60 см. Устанавливается опалубка, укладывается арматура (три стержня диаметром 20 мм) и производится бетонирование (сечение ленты 30×40 см). На чрезмерно пучинистых грунтах, особенно в пониженных элементах рельефа, рекомендуется монолитный ленточный фундамент укладывать на подсыпках толщиной 40-60 см, но при этом насыпной грунт подсыпки следует максимально уплотнить;

б) после окончания фундаментных работ надлежит закончить планировку площадки вокруг дома с обеспечением стока воды от здания;

в) на среднепучинистых, слабопучинистых и практически непучинистых грунтах можно устраивать ленточные фундаменты из сборных железобетонных блоков сечением 25×25 см и длиной не менее 2 м;

г) согласно типовому проекту обязательно следует выполнить укладку отмостки снаружи дома шириной 0,7 м, посадить декоративные кустарники, подготовить почвенный слой вокруг дома и посеять семена дернообразующих трав. Планировка участков под задернение должна быть выполнена под линейку.

МЕРОПРИЯТИЯ ПО УСТРОЙСТВУ МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

6.4. Малозаглубляемые фундаменты на локально уплотненном основании нашли применение при строительстве зданий и сооружений сельскохозяйственного назначения на средне- и слабопучинистых грунтах. Локальное уплотнение грунтов достигается забивкой фундаментных блоков в грунт или установкой сборных блоков в гнезда, вытрамбованные при помощи инвентарного уплотнителя динамическим способом, что повышает степень индустриализации строительных работ, снижает стоимость, трудовые затраты, и расходы стройматериалов.

Локально уплотненное грунтовое основание под фундаментом приобретает улучшенные физико-механические свойства и имеет значительно большую несущую способность. В результате повышенного давления на грунт и его большей плотности резко снижаются деформации основания при замерзании и оттаивании грунта.

Экспериментальными исследованиями по определению деформации морозного пучения под давлением в природных условиях было установлено, что при промерзании локально уплотненного основания ниже подошвы фундамента на 60-70 см величина морозного выпучивания фундамента составляет: при давлении на грунт в 1 кгс/см 2 - 5–6 мм; 2 кгс/см 2 - 4 мм; 3 кгс/см 2 - 3 мм; 4 кгс/см 2 - 2 мм и при давлении 6,5 кгс вертикальных перемещений у фундамента не наблюдалось в течение двух зим.

Применение локального уплотнения грунтов, в основании на средне- и слабопучинистых грунтах дает возможность использовать промерзающий грунт в качестве естественного основания с глубиной заложения фундаментов на 0,5-0,7 от нормативной глубины промерзания грунтов. Так, например, для средней полосы Европейской территории СССР заложение фундаментов можно принимать на 1 м от планировочной отметки с условием локального уплотнения грунтов.

Подготовка оснований под малозаглубляемые фундаменты должна производиться в следующем порядке:

а) срезка растительно-дернового слоя и подсыпка, грунта, не содержащего растительных включений;

б) локальное уплотнение грунтов в основании столбчатых фундаментов путем забивки инвентарного уплотнителя для образования гнезд под сборные фундаменты;

в) разбивка осей расположения уплотненных оснований должна производиться после того, как на площадку будет доставлено оборудование для локального уплотнения грунтов под отдельно-стоящие фундаменты;

г) глубина заложения малозаглубляемых фундаментов принимается из следующих условий:

для зданий, в которых не допускаются вертикальные перемещения от морозного пучения грунтов в зависимости от удельного давления на грунт под подошвой фундамента в пределах от 4 до 6 кгс/см 2 ;

для легких зданий, при наличии вертикальных перемещений, не мешающих нормальной эксплуатации (временные, сборнощитовые, деревянные и другие здания), глубина промерзания грунта под подошвой фундамента может быть принята, исходя из допустимых деформаций.

Перед устройством малозаглубляемых фундаментов на площадках со сложным геологическим сложением необходимо уточнить осадки фундаментов, установленных на локально-уплотненном основании, статическими испытаниями. Количество испытаний на объекте устанавливается проектной организацией в. зависимости от гидрогеологических условий.

Технология устройства малозаглубляемых фундаментов изложена во «Временных рекомендациях по проектированию и устройству мелкозаглубленных фундаментов на пучинистых грунтах под малоэтажные сельскохозяйственные здания» (НИИОСП, М., 1972).

7. ТЕПЛОИЗОЛЯЦИОННЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ И НОРМАЛЬНЫХ СИЛ МОРОЗНОГО ВЫПУЧИВАНИЯ МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ

ОПЫТ ПРИМЕНЕНИЯ ТЕПЛОИЗОЛЯЦИОННЫХ МЕРОПРИЯТИИ В ПРАКТИКЕ СТРОИТЕЛЬСТВА

7.1. Теплоизоляционные мероприятия, применяемые в практике фундаментостроения, подразделяются на временные (только на период строительства) и на постоянные (с учетом их действия в течение всего срока эксплуатации зданий и сооружения).

Во время строительства вокруг фундаментов зданий и сооружений рекомендуется применять временные теплоизоляционные покрытия из опилок, шлака, керамзита, шлаковаты, соломы, снега и других материалов в соответствии с указаниями по предохранению грунтов и грунтовых оснований от промерзания.

К постоянным теплоизоляционным мероприятиям относятся отмостки, укладываемые на теплоизоляционную подушку из шлака, керамзита, шлаковаты, поролона, прессованных торфяных плит, сухого песка и. др. материалов.

Уложенные теплоизоляционные отмостки вокруг строящегося здания обычно разрушаются при дальнейших монтажных работах движением механизмов и после полного окончания строительных работ их требуется перестраивать, что не всегда выполняется, а поэтому создаются условия для неравномерного водонасыщения грунтов и глубины промерзания грунтов возле фундаментов.

Наибольший теплоизоляционный эффект достигается в тех случаях, когда материал подушки находится в сухом состоянии, но часто теплоизоляционный материал, уложенный в корыто, водонасыщается осенью перед промерзанием и от этого снижается теплоизоляционный эффект.

В некоторых случаях вместо устройства отмосток применяют задернение поверхности грунта у наружных стен и, как показывает опыт, промерзание грунта под растительным покровом снижается на половину по сравнению с глубиной промерзания грунта под оголенной поверхностью грунта.

РЕКОМЕНДАЦИИ ПО УСТРОЙСТВУ ТЕПЛОИЗОЛЯЦИОННЫХ МЕРОПРИЯТИЙ ДЛЯ СНИЖЕНИЯ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ

7.2. В целях обеспечения сохранности отмосток и их теплоизоляционного эффекта рекомендуется вместо отмосток на теплоизоляционных подушках применять для отмосток керамзитобетон с объемным весом в сухом состоянии от 800 до 1000 кгс/м 3 при расчетной величине коэффициента теплопроводности соответственно в сухом состоянии 0,2-0,17 и в водонасыщенном 0,3-0,25 ккал/м·ч·°С.

Укладку отмостки из керамзитобетона следует производить только после тщательного уплотнения и планировки грунта возле фундаментов у наружных стен.

Керамзитобетонную отмостку желательно укладывать на поверхность грунта с расчетом меньшего ее водонасыщения. Не следует укладывать керамзитобетон в открытое в грунте корыто на толщину отмостки. Если же по конструктивным особенностям этого избежать нельзя, то необходимо предусмотреть дренажные воронки для отвода воды из-под керамзитобетонной отмостки.

Конструкция керамзитобетонной отмостки принимается простейшей формы в виде ленты, размеры которой назначаются в зависимости от расчетной глубины промерзания грунта по табл. 5.

Таблица 5

Глубина промерзания грунта, м

Размеры отмостки, м

толщина

ширина

До 1

0,15

2 и более

По данным экспериментальной проверки теплоизоляционного эффекта отмостки на керамзитовой подушке толщиной 0,2 м и шириной 1,5 м глубина промерзания грунта у ограждения зимних теплиц уменьшалась в 3 раза и коэффициент теплового влияния отапливаемой теплицы с отмосткой на керамзитовой подушке m t получен в среднем 0,269.

В такой же экспериментальной проверке на строительных объектах нуждаются предлагаемые размеры керамзитобетонных отмосток и конструкций незаглубляемых и малозаглубляемых железобетонных фундаментов на керамзите для временных зданий и сооружений строительных баз теплоэлектростанций.

8. УКАЗАНИЯ К ПРОИЗВОДСТВУ СТРОИТЕЛЬНЫХ РАБОТ ПО НУЛЕВОМУ ЦИКЛУ

8.1. К производству работ нулевого цикла предъявляются следующие требования: избегать избыточного водонасыщения пучинистых грунтов в основании фундаментов, предохранять их от промерзания в период строительства и своевременно оканчивать земляные работы по засыпке пазух и планировке площадки вокруг строящегося здания.

В практике строительства иногда на пониженных площадках применяется подсыпка грунта при помощи рефулирования со дна водоема мелкозернистого или пылеватого песка. Поскольку гидромониторами песок вместе с водой выливается из труб на площадку (с которой вода скатывается, а грунт оседает), следует предусмотреть дренирование песчаного намытого слоя в целях его самоуплотнения и снижения водонасыщения.

Обычно намытые мелкие и пылеватые пески долгое время находятся в водонасыщеном состоянии, поэтому такие грунты при промерзании оказываются сильнопучинистыми и в то же время слабоуплотненными.

При использования рефулированных грунтов в качестве естественных оснований нельзя допускать промерзания грунтов под фундаментами и укладывать фундаменты на промороженный грунт даже для малоэтажных зданий.

Там, где здания уже построены или находятся в стадии строительства, не следует допускать намыв пучинистых грунтов ближе 3 м от фундаментов наружных стен.

Способ производства земляных работ с применением гидромеханизации безвредно можно применять в южных районах нашей страны, где нормативная глубина промерзания грунтов не более 70-80 см, а также при непучинистых грунтах по всей территории СССР. Но на площадках, сложенных пучинистыми грунтами, разработку грунтов при помощи гидромеханизации производить не следует, так как этот способ водонасыщает грунты, что нарушает требования п.п. 3.36-3.38, 3.40 и 3.41 главы СНиП по проектированию оснований зданий и сооружений о предохранении грунтов от избыточного водонасыщения поверхностными водами. Категорического запрещения в применении разработки грунтов способом гидромеханизации в принципе нет, но при этом способе нужно предпринять необходимые гидромелиоративные мероприятия по осушению грунтов в основании фундаментов я дать надлежащие технико-экономические обоснования.

8.2. При устройстве фундаментов на пучинистых грунтах необходимо стремиться при рытье котлованов землеройными механизмами к соблюдению требований действующих нормативно-технических документов на производство и приемку земляных работ. Следует отрывать траншеи для укладки ленточных сборных и монолитных фундаментов небольшой ширины с тем расчетом, чтобы ширину пазух можно было перекрыть отмасткой или гидроизоляционным экраном. После монтажа сборных фундаментов или укладки бетона в монолитный фундамент следует немедленно произвести обратную засыпку пазух с тщательным уплотнением грунта и обеспечением стока от скопления поверхностных вод вокруг здания, не дожидаясь окончательной планировки площадки и укладки отмосток.

8.3. Открытые котлованы и траншеи не следует оставлять на длительное время до установки в них фундаментов, так как большой разрыв во времени между открытием котлованов и укладкой в них фундаментов в большинстве случаев приводит к резкому ухудшению грунтов в основании фундаментов вследствие периодического или постоянного затопления дна котлована водой. На пучинистых грунтах к вскрытию котлована следует приступать только тогда, когда на строительную площадку завезены фундаментные блоки и все необходимые материалы и потребное оборудование.

Все работы по укладке фундаментов и засыпке пазух желательно выполнять в летний период, когда работы можно производить быстро и с высоким качеством при сравнительно невысокой стоимости земляных работ. Сезонность производства работ по нулевому циклу на пучинистых грунтах было бы полезно соблюдать.

При необходимости вскрытия котлованов и траншей на глубину больше 1 м в зимнее время, когда грунт находится в твердо-мерзлом состоянии, часто приходится прибегать к искусственному оттаиванию грунта различными способами, что ускоряет выполнение земляные работ и не ухудшает строительные свойства грунтов в основании фундаментов. Не следует применять оттаивание пучинистых грунтов путем пуска водяного пара в пробуренные скважины, так как при этом резко повышается влажность грунта за счет конденсата водяного пара.

8.4. Засыпку пазух надлежит выполнять после окончания бетонирования монолитных фундаментов и после укладки цокольного перекрытия при сборно-блочных фундаментах. Следует иметь в виду, что засыпка пазух возле фундаментов бульдозером не обеспечивает надлежащего уплотнения грунта и вследствие этого происходит аккумуляция большого количества поверхностных вод, которые неравномерно водонасыщают грунты возле фундаментов и при замерзании создают благоприятные условия для деформации фундаментов и надфундаментного строения касательными силами морозного выпучивания. Еще хуже бывает, когда засыпка пазух выполняется в зимнее время мерзлым грунтом и без уплотнения. Уложенная отместка возле фундаментов обычно проваливается после оттаивания и самоуплотнения грунта в пазухах.

Пазухи надлежит засыпать тем же талым грунтом с тщательным послойным уплотнением.

Применение механизмов для уплотнения грунта при засыпке пазух затрудняется из-за наличия цокольных стенок, создающих стесненные условия для работы механизмов.

8.5. Согласно требованию главы СНиП по проектированию оснований зданий и сооружений надлежит применять мероприятия по предотвращению промерзания пучинистого грунта ниже подошвы фундамента в период строительства.

В случае перезимования уложенных фундаментов и плит не следует забывать о предохранении грунтов от промерзания, особенно когда фундаменты будут нагружаться при кладке или монтаже стен здания до оттаивания грунтов ниже подошвы, фундаментов. В целях предохранения грунтов от замерзания в основании фундаментов применяют различные способы, начиная с засыпки грунтом и кончая покрытием фундаментов и плит теплоизоляционными материалами. Отложения снега являются также хорошим теплоизолирующим материалом и его можно использовать в качестве теплоизолятора.

Железобетонные плиты, толщиной более 0,3 м на сильнопучинистых грунтах должны быть укрыты при нормативной глубине промерзания более 1,5 м минеральными плитами в один слой, шлаковатными магами или керамзитом с объемным весом 500 кгс/м 3 и коэффициентом теплопроводности 0,18 слоем 15-20 см.

Если здание возведено, а грунты в основании фундаментов находятся в мерзлом состоянии, то необходимо позаботиться об обеспечении равномерного оттаивания грунтов под подошвой фундамента путем укладки теплоизоляционных покрытий с наружных сторон фундаментов и обогревом грунтов внутри здания, для чего можно использовать электроэнергию или нагревание воздуха в подполье калориферами и временными отопительными печами.

Стены зимней кладки для равномерного оттаивания с южной стороны приходится завешивать рогожами, щитами, толем, фанерой или соломенными матами для защиты от обрушения при быстром и неравномерном оттаивании.

В качестве теплоизоляции на период оттаивания грунтов возле фундаментов снаружи здания на 1-1,5 месяца с южной стороны можно применить складирование бетонных блоков, кирпича, щебня, песка, керамзита и других материалов.

Из-за неравномерного оттаивания грунтов под наружными и внутренними поперечными несущими стенами происходит образование сквозных трещин под и над проемами на поперечной внутренней несущей стене. Эти трещины обычно расширяются и иногда вверху доходят до десятков сантиметров, при этом у наружных продольных стен наблюдается крен с отклонением верхней части в сторону от здания. При больших кренах приходится разбирать значительные участки наружных и внутренних стен.

Крен наружных стен часто образуется в процессе промерзания грунта в январе-марте, когда фундаменты наружных стен заложены на расчетную глубину промерзания грунта, а под внутренние несущие стены фундаменты заложены мелко (на половину или даже одну треть от нормативной глубины промерзания грунтов).

Под действием нормальных сил морозного пучения грунтов на подошву фундаментов внутренних несущих стен также появляются расширяющиеся кверху сквозные трещины, при этом верх наружных стен заметно отклоняется от вертикали. Крем наружных стен зависит от высоты поднятия внутренней каменной стены и ширины раскрытия одной или двух трещин на верху внутренней стены.

8.6. При первом обнаружении хотя бы мелких волосяных трещин на стенах каменных зданий необходимо установить причину их появления и принять меры по прекращению расширения этих трещин. Если трещины появились под действием нормальных сил морозного пучения, то нельзя допускать заделки этих трещин цементным раствором. Основным мероприятием в данном случае будет оттаивание грунта внутри здания под фундаментами внутренних несущих стен, что вызовет осадку фундамента и трещины закроются частично или полностью. От продолжения возведения стен или монтажа сборных домов при промороженном основании следует воздержаться до полного оттаивания грунтов под фундаментами и до стабилизации осадки фундаментов после оттаивания грунтов.

8.7. На строительных площадках во время производства работ грунты в основании локально водонасыщаются от утечки воды в грунт из неисправной водопроводной сети. Это приводит к тому, что на отдельных участках глинистые грунты из непучинистых и слабопучинистых превращаются в сильнопучинистые со всеми вытекающими последствиями.

Для предохранения грунтов, в основании фундаментов от локального водонасыщения в период строительства линии временного водоснабжения стройки следует укладывать по поверхности, с тем чтобы легче было обнаружить появление утечки воды и своевременно устранить повреждения в водопроводной сети.

9. МЕРОПРИЯТИЯ НА ПЕРИОД ЭКСПЛУАТАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПО ЗАЩИТЕ ГРУНТОВ В ОСНОВАНИИ ОТ ИЗБЫТОЧНОГО ВОДОНАСЫЩЕНИЯ

9.1. При промышленной эксплуатации зданий и сооружений, возведенных на пучинистых грунтах, не следует допускать изменения проектных условий по основаниям и фундаментам. Для обеспечения устойчивости фундаментов и эксплуатационной пригодности зданий необходимо выполнять мероприятия, направленные против повышения степени пучинистости грунтов и появления деформаций конструктивных элементов здания от морозного выпучивания фундаментов. Эти мероприятия сводятся к выполнению следующих требований: а) не создавать условий для повышения влажности грунтов в основании фундаментов и в зоне сезонного промерзания ближе 5 м в сторону от фундаментов; б) не допускать более глубокого промерзания грунтов около фундаментов по отношению к расчетной глубине промерзания грунтов, принятой при проектировании; в) не разрешать срезать грунт вокруг фундаментов при перепланировке населенного пункта или застраиваемой площадки; г) не снижать проектную нагрузку на фундамент.

В целях борьбы с повышением природной влажности грунтов в основании фундаментов в процессе промышленной эксплуатации зданий и сооружений рекомендуется: все производственные, бытовые и ливневые воды спускать в пониженные места в сторону от фундаментов или в приемники ливневой канализации и содержать водоотводные сооружения в исправном состоянии; ежегодно все работы по прочистке поверхностных водоотводов, т.е. нагорных канав, кюветов, лотков, водоприемников, отверстий искусственных сооружений, а также ливневой канализации, должны выполняться до начала осенней дождливой погоды. Необходимо проводить периодическое наблюдение за состоянием водоотводных сооружений, все работы по исправлению поврежденных откосов, нарушений планировки и отмосток производить немедленно, не затягивая эти работы до начала промерзания грунтов. Если эти повреждения образовали застой воды на поверхности грунта вблизи фундаментов, следует срочно обеспечить отвод поверхностной воды от фундаментов. При Обнаружении на местности эрозионной деятельности ливневых вод следует срочно ликвидировать размыв грунтов и укрепить участки по водостоку с большим перепадом ливневых вод.

9.2. Предусмотренные по проекту и осуществленные строительством теплоизоляционные покрытия у фундаментов вокруг зданий в виде отмосток на шлаковых или керамзитовых подушках, задернения поверхности грунта или другие покрытия должны поддерживаться в таком состоянии, как это было выполнено по проекту во время строительства. При проведении капитальных ремонтов зданий нельзя допускать перезимовку отапливаемых зданий без отопления, а также замену отмосток вокруг зданий с теплоизоляционными покрытиями на отмостки без теплоизоляционного покрытия.

При капитальных ремонтах зданий нельзя допускать понижения планировочных отметок у выстроенных зданий на сильнопучинистых грунтах, так как глубина заложения фундамента может оказаться меньше расчетной глубины промерзания грунта. Расстояние от наружной стены здания до места срезки грунта должно быть не менее расчетной глубины промерзания грунтов, а если позволяют условия, то следует оставить полосу нетронутого грунта (т.е. без срезки) возле фундаментов шириной 3 м. Исключением из этого требования могут быть только такие случаи, когда расстояние от планировочной отметки до подошвы фундамента, после срезки грунта окажется не менее расчетной глубины промерзания грунтов. При этих работах нельзя нарушать условия поверхностного водоотвода атмосферных вод и других гидромелиоративных устройств, что позволил предотвратить водонасыщение грунтов возле фундаментов зданий и сооружений.

9.3. В период эксплуатации зданий может возникнуть необходимость изменить при реконструкции нагрузку на фундаменты промышленных зданий при смене оборудования или изменении технологических процессов производства, что может нарушить соотношение между силами морозного выпучивания фундаментов и давлением на фундаменты от веса здания.

Часто при повышении нагрузок на фундаменты требуется применять усиление фундаментов. При этом возрастает площадь смерзания грунта с боковой поверхностью фундамента, касательные силы морозного выпучивания увеличиваются пропорционально возрастанию площади смерзания фундамента с грунтом. Следовательно, при проектировании усиления фундаментов (особенно столбчатых) надлежит проверить устойчивость фундаментов на действие касательных сил морозного выпучивания.

Также надлежит проверять расчетом фундаменты под оборудование в холодных цехах или на открытом воздухе, когда тяжелое оборудование заменяется более легким, т.е. при снижении нагрузки на фундамент. Если расчет покажет, что касательные силы морозного выпучивания превышают вес сооружения, то следует применительно к конкретным условиям предусмотреть конструктивные или другие мероприятия против выпучивания фундаментов.

9.4. Предусмотренные проектом участки с травяным покровом нуждаются в ежегодном уходе, который состоит в своевременной подготовке почвенного слоя, подсеве дернообразующих трав и подсадке кустарников. Наличие дернового слоя почти наполовину снижает глубину промерзания грунтов, а кустарниковые насаждения аккумулируют отложения снега, что снижает глубину промерзания более чем в три раза по сравнению с глубиной промерзания на открытой площадке. Все работы по уходу и за дерновым покровом, и за кустарниковыми насаждениями лучше выполнить в весеннее время без нарушения принятой проектом планировки территории. Там, где окажутся нарушены дерновый покров и планировка поверхности грунта вследствие проведения земляных работ по ликвидации аварий подземных коммуникаций или прохождения автомашин необходимо восстановить планировку, взрыхлить растительный слой и вновь посеять семена дернообразующих трав. Лучшими задернителями считаются травосмеси местной флоры. В жаркие и засушливые месяцы требуется поливать дерновый покров и декоративные кустарники, с тем чтобы они не погибли от недостатка влаги.

9.5. Иногда в период промышленной эксплуатации обнаруживаются деформации зданий в виде появления трещин в стенах кирпичной кладки и перекосов у проемов крупноблочных или панельных ограждений. При первом обнаружении деформации конструктивных элементов здания необходимо установить систематическое наблюдение за изменением этих деформаций по установленным на трещинах маякам и по данным нивелировки установленных марок. Все коренные мероприятия по ликвидации имеющихся деформаций следует назначать только после установления причин этих деформаций. В особо сложных случаях администрация предприятия для установления причин деформации и разработки мероприятий должна обратиться в проектный или научно-исследовательский институт.

Глубину заложения фундаментов выбираем с учетом следующих факторов:

    Конструктивных особенностей зданий и сооружений.

    Характера напластования, вида и состояния грунтов состояния.

    Положение уровня грунтовых вод.

    Величины и характера нагрузок, действующих на основание и фундаменты.

    Глубины сезонного промерзания и оттаивания.

    Глубины заложения фундаментов близко расположенных существенных зданий и сооружений.

Подземная часть несущих конструкций, входящих в нулевой цикл, в процессе строительства состоит из бетонных блоков стен подвалов и железобетонных фундаментных плит. В качестве основания фундаментов принят II слой.

Определяем глубину заложения фундамента из таких параметров:

при выборе глубины заложения фундамента используем анализ инженерно-геологических условий строительной площадки. В связи с тем, что в растительном слое находится много органических веществ, имеет большую сжимаемость, находится слой глубины промерзания, принимать этот слой под основу фундамента невозможно. Этот слой необходимо срезать и устроить фундамент. Если учитывать то что уровень подошвы должны находится минимум на 1м выше УГВ (108,4 м) .

Согласно условий СНиП глубина заложения фундамента должна быть не менее расчетной глубины промерзания грунта. Коэффициент k n = 0,6 для зданий с подвалом и средней температурой воздуха в помещении +10 0 С будет равен 0,6.

Расчетная глубина промерзания:

d = k n * d n = 0.6 * 0,9 = 0,54 м

Высота подушки фундамента 0.3 м.

Фундамент опирается на пески пылеватые плотные.

Вывод: принимаем глубину заложения фундамента – 2,0м

Перед устройством фундамента необходимо будет устраивать работы по укреплению основания и проведению дренажных работ.

4. Определение размеров подошвы фундамента

Основные размеры фундаментов малого заложения в большинстве случаев определяются исходя из расчёта оснований по деформациям. При этом принимают во внимание конструктивные соображения, характер действующих нагрузок, условие работы грунтового основания, а также их прочностные и деформативные характеристики.

В соответствии с нормами проектирования конструкций все нагрузки считаются приложенными в центре тяжести подошвы фундамента. Основным методом расчёта является расчёт по деформациям, т.е. по второй группе предельных состояний. При расчёте деформаций основания с использованием расчётных схем, среднее давление под подошвой фундамента не должно превышать расчётного сопротивления грунта основания .

1 – стена; 2 – фундаментний блок;

3 – основа; 4 – фундаментная подушка;

5 - гидроизоляция; 6 – отмостка;

7 – несущий слой; 8 – подстилающий слой.

Критерии выбора размеров подошвы фундамента базируются на условиях расчета основ о граничным состояниям. Расчет проводят в линейно –деформированной основе, которая используется при выполнении условий:

Для центрально сжатых(т.е. для наших фундаментов) Р ≤ R.

Где Р – среднее давление под подошвой фундамента внешнего напряжения;

R – расчетное сопротивление грунта основания.

Среднее давление под подошвой фундамента находят по формуле:

Где N- результирующая вертикальная сила на обрезе фундамента, кПа;

А- площадь подошвы фундамента,м 2 ;

Расчётное сопротивление грунта:

γ c 1 и γ c 2 – коэффициенты условий работы, учитывающие особенности работы различных грунтов в основании фундаментов;

=1,25 – (т.к.
);

=1,2 (т.к. L/Н<1,5)

k – 1.1 (т.к. физико-механические характеристики грунта приняты по СНиП 2.02.01-83);

=1 (если ширина подошвы менее 20м);

Мγ, Мq, Мс – безразмерные коэффициенты по СНиП в зависимости от .

При =
Мγ=0,69

=25 кПа - удельное сцепление грунта, кПа;

=0,57 ;

d 1 =2,0м (глубина заложения фундамента);

γ / - удельный вес грунта расположенного выше подошвы фундамента.

γ – удельный вес грунта расположенного под подошвой фундамента.

кН/

Примем

R= 371,59

Определим Р:

Под самонесущую стену:

(при
)

< R=371,59

Под наружную несущую стену:

(при
)

< R=371,59

Под внутреннюю стену:

(при
)

< R=371,59

Т.к. все условия выполнены, принимаем ширину подошвы фундамента
, принимаем фундментные подушки марки Фл 12.12.

Вопрос от клиента : "Добрый день, специалисты СК "Установка Свай". Мы с братом занимаемся строительством коттеджа из пенобетона в Подмосковье. Планируем возводить его на мелкозаглубленном фундаменте ленточного типа, но сомневаемся, применимо ли такое основание в условиях местных грунтов. Подскажите, как правильно выбрать глубину закладки фундамента. С уважением, Виктор Романович"


На данной странице приведена информация о глубине заложения железобетонных фундаментов и методике ее определения. Мы рассмотрим требования СНиП, которыми нормируется данный процесс, и типовую глубину размещения оснований заглубленного типа и МЗФ.

Что нужно учесть при вычислении глубины заложения

Проектирование любого железобетонного фундамента начинается с расчета требуемой глубины закладки основания. Глубина заложения - это расстояние между нижним контуром опорной пяты фундамента и уровнем грунта на участке под застройку.

Исходя из глубины заложения все ЖБ основания классифицируются на три группы:

  • Незаглубленные - опорная подошва размещена на поверхности грунта (применимы лишь в условиях высокоплотных, каменистых пород);
  • Мелкозаглубленные (МЗФ) - опущенные в почву на 30-80 см (используются в несклонной к пучении почве);
  • Глубокого заложения - опущенные в почву на 80-180 см. (единственный возможный вариант ленточного фундамента в проблемной почве).

Рис. 1.1

Согласно положениям действующих СНиП на глубину заложения основания оказывают влияние следующие факторы:

  • Геологические характеристики участка под застройку;
  • Особенности конструкции и габариты обустраиваемого здания;
  • Глубина промерзания грунта.

Важно : при проектировании глубины закладки основания расчет ведется по каждому фактору индивидуально, и в качестве итогового показателя используется максимальная полученная глубина.

Геологические характеристики объекта

Во многих случаях поверхностный слой грунта на строительной площадке представлен пластом слабой, низкоплотной почвы, не обладающей требуемой несущей способностью . Опорную подошву фундамента нельзя закладывать в таком грунте, поскольку здание не получит достаточной надежности и устойчивости.

Чтобы определить, на какой глубине размещен несущий пласт грунта на площадке проводятся геодезические изыскания , в процессе которых бурятся скважины и берется забор керна для лабораторного анализа. Как несущий пласт грунта рассматривается слой почвы, фактическое сопротивление которого равно либо больше 150 кПа.

Требования к глубине закладки фундамента по геологическим условиям следующие:

  • Опорная пята фундамента должна углубляться в несущий пласт грунта на 20 и больше см;
  • В поверхностные напластования высокоплотных пород (глинистых, песчаных, супесях) МЗФ нужно углублять минимум на 30 см.
Дополнительным фактором, оказывающим влияние на фундамента закладки основания, является уровень грунтовых вод. Оптимальным для строительства вариантом считается низкий УГВ, при котором основание в процессе эксплуатации не контактирует с грунтовой влагой.



Рис. 1.2

Если же такое размещение неприменимо (УГВ высокий, а фундамент нужно закладывать на глубину 1.5-2 м), при строительстве проводится водопонижение либо вокруг фундамента создаются дренажные каналы.

Особенности конструкции здания

На глубину закладки ЖБ основания влияют следующие характеристики строящегося сооружения:
  • Массогабаритные характеристики;
  • Величина нагрузок, которым будет подвергаться основание в процессе эксплуатации (воздействия от веса здания, снегового и полезного давления);
  • Характер распределения нагрузок (необходимость усиления фундамента в отдельных местах - при установке тяжелого производственного оборудования и т.д.);
  • Наличие либо отсутствие подвала или цокольного этажа.

Рис. 1.3

Важно : при обустройстве цокольного этажа заглубление столбчатых фундаментов выполняется на 1.5 м. ниже полового перекрытия, ленточных - на 0.5 м. ниже.

Глубина промерзания почвы

Одним из основополагающих факторов, влияющих на глубину закладки основания, является уровень промерзания земли в зимний период, от которого зависит пучинистость грунта.

Важно : пучинистость - это свойство насыщенного водой грунта увеличивать свои объемы в процессе промерзания (из-за перехода влаги из жидкого в твердое состояние), что приводит к деструктивным выталкивающим нагрузкам на фундаментную ленту, которые могут стать причиной деформации оснований, трещин на стенах и перекрытиях.

К почве, имеющий высокую склонность к пучению, причисляют следующие виды грунта:

  • Насыщенные грунтовыми водами пески;
  • Песчаный грунт с большим количеством пылистых частиц;
  • Пластичный глиняный грунт;
  • Суглинок.


Рис. 1.4

В грунтах, имеющих среднюю и высокую склонность к пучению, фундамент всегда должен закладываться ниже глубины промерзания - при таком расположении на фундамент не действуют нагрузки от вертикального пучения.

Как и чем определить глубину заложения

Базовый фактор, согласно которому ведется расчет глубины закладки фундамента - уровень промерзания земли. Высчитать его можно по нормативным формулам, представленных в рекомендациях Строительных Норм и Правил. В качестве примера приводим данный расчет для типичных грунтовых условий г. Москва.

K0 - индивидуальный для каждого вида грунта коэффициент:

  • 0.24 - для глин, суглинков;
  • 0.28 - для песков и супесей;
  • 0.3 - для крупных песчаных пород;
  • 0.35 - для твердой скальной почвы.
- корень квадратный, полученный из суммы минусовых температур, наблюдаемых в течении года в конкретном регионе. Данная величина приводится к нормативном документа СНиП 21.01.99 "Климатология строительства" (подпункт № 5.1).

Приводим среднегодовые температуры для Московской области:



Рис. 1.5 : Среднемесячные температуры в Московской области

Исходя из таблицы (используются только выделенные красным числа) корень минусовых температур будет - 4.79 градусов.

Получив требуемые исходные данные можно воспользоваться основной формулой (берем коэффициент для преобладающей в Подмосковье глинистой почвы): Kfn = K0 = 0.23 х 4.79 = 110 см

Зная расчетный уровень промерзания грунта по региону можно высчитать глубину промерзания под определенным зданием. Расчет ведется с применением формулы: Df = Кh x Kfn , где:

  • Kfn - расчетный уровень промерзания;
  • Kh - коэфф. промерзания.

Важно : велична Kh разная у неотапливаемых и отапливаемых построек. Если сооружение неотапливается, но находится в регионе, обладающем среднегодовой температурой выше нуля, коэфф. составляет 1,1.

Величина коэффициента промерзания отапливаемых построек приведена в таблице:


Рис. 1.6

Исходя из коэффициента и общей глубины промерзания земли можно высчитать уровень промерзания под определенным сооружением и установить требуемую глубину закладки фундамента.



Рис. 1.7

Глубина заложения - СНИП

Вышеуказанные расчетные формулы и особенности проведения вычислений, направленных на определение глубины размещения фундамента, приведены в документе СНиП № 2.02.01-83 "Основания домов и сооружений" (09.11.1985 года)

Глубина заложения ленточного фундамента

Все ленточные фундаменты классифицируются согласно глубине размещения на два типа:

Новое на сайте

>

Самое популярное